《山东省青岛市即墨区第一中学2023届高考考前模拟数学试题含解析.doc》由会员分享,可在线阅读,更多相关《山东省青岛市即墨区第一中学2023届高考考前模拟数学试题含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知x,则“”是“”的( )A充分而不必要条件B必要而不充分条件C充分必要条件D既不充分也不必要条件2若函数函数只有1个零点,则的取值范围是( )ABCD3函数 的部分图象如图所示,则 ( )
2、A6B5C4D34已知向量,且,则( )ABC1D25一个算法的程序框图如图所示,若该程序输出的结果是,则判断框中应填入的条件是( )ABCD6下列命题是真命题的是( )A若平面,满足,则;B命题:,则:,;C“命题为真”是“命题为真”的充分不必要条件;D命题“若,则”的逆否命题为:“若,则”.7设分别是双线的左、右焦点,为坐标原点,以为直径的圆与该双曲线的两条渐近线分别交于两点(位于轴右侧),且四边形为菱形,则该双曲线的渐近线方程为( )ABCD8下列命题中,真命题的个数为( )命题“若,则”的否命题;命题“若,则或”;命题“若,则直线与直线平行”的逆命题.A0B1C2D39已知抛物线的焦点
3、为,准线为,是上一点,是直线与抛物线的一个交点,若,则( )AB3CD210给定下列四个命题:若一个平面内的两条直线与另一个平面都平行,则这两个平面相互平行;若一个平面经过另一个平面的垂线,则这两个平面相互垂直;垂直于同一直线的两条直线相互平行;若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直其中,为真命题的是( )A和 B和 C和 D和11中心在原点,对称轴为坐标轴的双曲线的两条渐近线与圆都相切,则双曲线的离心率是( )A2或B2或C或D或12在复平面内,复数(为虚数单位)对应的点位于( )A第一象限B第二象限C第三象限D第四象限二、填空题:本题共4小题,每小题5分
4、,共20分。13展开式中的系数为_.14已知向量满足,且,则 _15如图,已知圆内接四边形ABCD,其中,则_16若变量,满足约束条件,则的最大值为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数,曲线在点处的切线方程为求a,b的值;证明:18(12分)已知椭圆的右焦点为,离心率为.(1)若,求椭圆的方程;(2)设直线与椭圆相交于、两点,、分别为线段、的中点,若坐标原点在以为直径的圆上,且,求的取值范围.19(12分)在直角坐标系中,以为极点,轴正半轴为极轴建立极坐标系曲线的极坐标方程为:,曲线的参数方程为其中,为参数,为常数(1)写出与的直角坐标方程;(
5、2)在什么范围内取值时,与有交点20(12分)已知.() 若,求不等式的解集;(),求实数的取值范围.21(12分)已知.(1)若,求函数的单调区间;(2)若不等式恒成立,求实数的取值范围.22(10分)在中,、分别是角、的对边,且.(1)求角的值;(2)若,且为锐角三角形,求的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】,不能得到, 成立也不能推出,即可得到答案.【详解】因为x,当时,不妨取,故时,不成立,当时,不妨取,则不成立,综上可知,“”是“”的既不充分也不必要条件,故选:D【点睛】本题主要考查了
6、充分条件,必要条件的判定,属于容易题.2、C【解析】转化有1个零点为与的图象有1个交点,求导研究临界状态相切时的斜率,数形结合即得解.【详解】有1个零点等价于与的图象有1个交点记,则过原点作的切线,设切点为,则切线方程为,又切线过原点,即,将,代入解得所以切线斜率为,所以或故选:C【点睛】本题考查了导数在函数零点问题中的应用,考查了学生数形结合,转化划归,数学运算的能力,属于较难题.3、A【解析】根据正切函数的图象求出A、B两点的坐标,再求出向量的坐标,根据向量数量积的坐标运算求出结果【详解】由图象得,令=0,即=k,k=0时解得x=2,令=1,即,解得x=3,A(2,0),B(3,1),.故
7、选:A.【点睛】本题考查正切函数的图象,平面向量数量积的运算,属于综合题,但是难度不大,解题关键是利用图象与正切函数图象求出坐标,再根据向量数量积的坐标运算可得结果,属于简单题.4、A【解析】根据向量垂直的坐标表示列方程,解方程求得的值.【详解】由于向量,且,所以解得.故选:A【点睛】本小题主要考查向量垂直的坐标表示,属于基础题.5、D【解析】首先判断循环结构类型,得到判断框内的语句性质,然后对循环体进行分析,找出循环规律,判断输出结果与循环次数以及的关系,最终得出选项【详解】经判断此循环为“直到型”结构,判断框为跳出循环的语句,第一次循环:;第二次循环:;第三次循环:,此时退出循环,根据判断
8、框内为跳出循环的语句,故选D【点睛】题主要考查程序框图的循环结构流程图,属于中档题 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可6、D【解析】根据面面关系判断A;根据否定的定义判断B;根据充分条件,必要条件的定义判断C;根据逆否命题的定义判断D.【详解】若平面,满足,则可能相交,故A错误;命题“:
9、,”的否定为:,故B错误;为真,说明至少一个为真命题,则不能推出为真;为真,说明都为真命题,则为真,所以“命题为真”是“命题为真”的必要不充分条件,故C错误;命题“若,则”的逆否命题为:“若,则”,故D正确;故选D【点睛】本题主要考查了判断必要不充分条件,写出命题的逆否命题等,属于中档题.7、B【解析】由于四边形为菱形,且,所以为等边三角形,从而可得渐近线的倾斜角,求出其斜率.【详解】如图,因为四边形为菱形,所以为等边三角形,两渐近线的斜率分别为和.故选:B【点睛】此题考查的是求双曲线的渐近线方程,利用了数形结合的思想,属于基础题.8、C【解析】否命题与逆命题是等价命题,写出的逆命题,举反例排
10、除;原命题与逆否命题是等价命题,写出的逆否命题后,利用指数函数单调性验证正确;写出的逆命题判,利用两直线平行的条件容易判断正确.【详解】的逆命题为“若,则”,令,可知该命题为假命题,故否命题也为假命题;的逆否命题为“若且,则”,该命题为真命题,故为真命题;的逆命题为“若直线与直线平行,则”,该命题为真命题.故选:C.【点睛】本题考查判断命题真假. 判断命题真假的思路:(1)判断一个命题的真假时,首先要弄清命题的结构,即它的条件和结论分别是什么,然后联系其他相关的知识进行判断(2)当一个命题改写成“若,则”的形式之后,判断这个命题真假的方法:若由“”经过逻辑推理,得出“”,则可判定“若,则”是真
11、命题;判定“若,则”是假命题,只需举一反例即可9、D【解析】根据抛物线的定义求得,由此求得的长.【详解】过作,垂足为,设与轴的交点为.根据抛物线的定义可知.由于,所以,所以,所以,所以.故选:D【点睛】本小题主要考查抛物线的定义,考查数形结合的数学思想方法,属于基础题.10、D【解析】利用线面平行和垂直,面面平行和垂直的性质和判定定理对四个命题分别分析进行选择【详解】当两个平面相交时,一个平面内的两条直线也可以平行于另一个平面,故错误;由平面与平面垂直的判定可知正确;空间中垂直于同一条直线的两条直线还可以相交或者异面,故错误;若两个平面垂直,只有在一个平面内与它们的交线垂直的直线才与另一个平面
12、垂直,故正确综上,真命题是.故选:D【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力,是中档题11、A【解析】根据题意,由圆的切线求得双曲线的渐近线的方程,再分焦点在x、y轴上两种情况讨论,进而求得双曲线的离心率【详解】设双曲线C的渐近线方程为y=kx,是圆的切线得: ,得双曲线的一条渐近线的方程为 焦点在x、y轴上两种情况讨论:当焦点在x轴上时有: 当焦点在y轴上时有: 求得双曲线的离心率 2或故选:A【点睛】本小题主要考查直线与圆的位置关系、双曲线的简单性质等基础知识,考查运算求解能力,考查数形结合思想解题的关键是:由圆的切线求得直线 的方
13、程,再由双曲线中渐近线的方程的关系建立等式,从而解出双曲线的离心率的值此题易忽视两解得出错误答案12、C【解析】化简复数为、的形式,可以确定对应的点位于的象限【详解】解:复数故复数对应的坐标为位于第三象限故选:【点睛】本题考查复数代数形式的运算,复数和复平面内点的对应关系,属于基础题二、填空题:本题共4小题,每小题5分,共20分。13、【解析】变换,根据二项式定理计算得到答案.【详解】的展开式的通项为:,取和,计算得到系数为:.故答案为:.【点睛】本题考查了二项式定理,意在考查学生的计算能力和应用能力.14、【解析】由数量积的运算律求得,再由数量积的定义可得结论【详解】由题意,即,故答案为:【
14、点睛】本题考查求向量的夹角,掌握数量积的定义与运算律是解题关键15、【解析】由题意可知,在和中,利用余弦定理建立方程求,同理求,求,代入求值.【详解】由圆内接四边形的性质可得,连接BD,在中,有在中,所以,则,所以连接AC,同理可得,所以所以故答案为:【点睛】本题考查余弦定理解三角形,同角三角函数基本关系,意在考查方程思想,计算能力,属于中档题型,本题的关键是熟悉圆内接四边形的性质,对角互补.16、【解析】根据约束条件可以画出可行域,从而将问题转化为直线在轴截距最大的问题的求解,通过数形结合的方式可确定过时,取最大值,代入可求得结果.【详解】由约束条件可得可行域如下图阴影部分所示: 将化为,则
15、最大时,直线在轴截距最大;由直线平移可知,当过时,在轴截距最大,由得:,.故答案为:.【点睛】本题考查线性规划中最值问题的求解,关键是能够将问题转化为直线在轴截距的最值的求解问题,通过数形结合的方式可求得结果.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)见解析【解析】分析:第一问结合导数的几何意义以及切点在切线上也在函数图像上,从而建立关于的等量关系式,从而求得结果;第二问可以有两种方法,一是将不等式转化,构造新函数,利用导数研究函数的最值,从而求得结果,二是利用中间量来完成,这样利用不等式的传递性来完成,再者这种方法可以简化运算.详解:(1)解:,由题意
16、有,解得(2)证明:(方法一)由(1)知,.设则只需证明 ,设则, 在上单调递增,使得且当时,当时,当时,单调递减当时,单调递增 ,由,得, ,设, 当时,在单调递减, ,因此(方法二)先证当时, ,即证设,则,且,在单调递增,在单调递增,则当时,(也可直接分析 显然成立)再证设,则,令,得且当时,单调递减;当时,单调递增. ,即又,点睛:该题考查的是有关利用导数研究函数的综合问题,在求解的过程中,涉及到的知识点有导数的几何意义,有关切线的问题,还有就是应用导数证明不等式,可以构造新函数,转化为最值问题来解决,也可以借用不等式的传递性,借助中间量来完成.18、(1);(2).【解析】(1)由椭
17、圆的离心率求出、的值,由此可求得椭圆的方程;(2)设点、,联立直线与椭圆的方程,列出韦达定理,由题意得出,可得出,【详解】(1)由题意得,.又因为,所以椭圆的方程为;(2)由,得.设、,所以,依题意,易知,四边形为平行四边形,所以.因为,所以.即,将其整理为.因为,所以,.所以,即.【点睛】本题考查椭圆方程的求法和直线与椭圆位置关系的综合运用,解题时要认真审题,注意挖掘题设中的隐含条件,合理地进行等价转化,考查计算能力,属于中等题.19、(1),(2)【解析】(1)利用,代入可求;消参可得直角坐标方程. (2)将的参数方程代入的直角坐标方程,与有交点,可得,解不等式即可求解.【详解】(1)(2
18、)将的参数方程代入的直角坐标方程得:与有交点,即【点睛】本题考查了极坐标方程与普通方程的转化、参数方程与普通方程的转化、直线与圆的位置关系的判断,属于基础题.20、();().【解析】()利用零点分段讨论法把函数改写成分段函数的形式,分三种情况分别解不等式,然后取并集即可;()利用绝对值三角不等式求出的最小值,利用均值不等式求出的最小值,结合题意,只需即可,解不等式即可求解.【详解】()当时, , ,或,或,或所以不等式的解集为; ()因为,又(当时等号成立),依题意,有,则,解之得,故实数的取值范围是.【点睛】本题考查由存在性问题求参数的范围、零点分段讨论法解绝对值不等式、利用绝对值三角不等
19、式和均值不等式求最值;考查运算求解能力、分类讨论思想、逻辑推理能力;属于中档题.21、(1)答案不唯一,具体见解析(2)【解析】(1)分类讨论,利用导数的正负,可得函数的单调区间.(2)分离出参数后,转化为函数的最值问题解决,注意函数定义域.【详解】(1)由得或当时,由,得.由,得或此时的单调递减区间为,单调递增区间为和.当时,由,得由,得或此时的单调递减区间为,单调递增区间为和综上:当时,单调递减区间为,单调递增区间为和当时,的单调递减区间为,单调递增区间为和.(2)依题意,不等式恒成立等价于在上恒成立,可得,在上恒成立,设,则令,得,(舍)当时,;当时,当变化时,变化情况如下表:10单调递
20、增单调递减当时,取得最大值,.的取值范围是.【点睛】本题主要考查了利用导数证明函数的单调性以及利用导数研究不等式的恒成立问题,属于中档题.22、 (1) .(2) .【解析】(1)根据题意,由余弦定理求得,即可求解C角的值;(2)由正弦定理和三角恒等变换的公式,化简得到,再根据为锐角三角形,求得,利用三角函数的图象与性质,即可求解.【详解】(1)由题意知,由余弦定理可知,又,.(2)由正弦定理可知,即,又为锐角三角形,即,则,所以,综上的取值范围为.【点睛】本题主要考查了利用正弦定理和三角函数的恒等变换求解三角形问题,对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值. 利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题.