《山东省菏泽市菏泽一中2023年高三下学期第六次检测数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《山东省菏泽市菏泽一中2023年高三下学期第六次检测数学试卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1执行如图所示的程序框图,则输出的( )A2B3CD2 “幻方”最早记载于我国公元前500年的春秋时期大戴礼中“阶幻方”是由前个正整数组成的个阶方阵,其各行各列及两条对角线所含的个数之和(简称幻和)相等,例如“3阶幻方”的幻和为15(如图所示)则“5阶幻方”的幻和为( )A75B65C55D453党的十九大报告明确提出:在共享经济等领域培育增长点、形成新动能.共享经济是公众将闲置资源通过社会化平台与他人共享,进而获得收入的经济现象.为考察共享经济对企业经济活跃度的影响,在四个不同的企业各取两
3、个部门进行共享经济对比试验,根据四个企业得到的试验数据画出如下四个等高条形图,最能体现共享经济对该部门的发展有显著效果的图形是( )ABCD4若复数满足(是虚数单位),则的虚部为( )ABCD5已知向量,若,则( )ABCD6甲、乙两名学生的六次数学测验成绩(百分制)的茎叶图如图所示.甲同学成绩的中位数大于乙同学成绩的中位数;甲同学的平均分比乙同学的平均分高;甲同学的平均分比乙同学的平均分低;甲同学成绩的方差小于乙同学成绩的方差.以上说法正确的是( )ABCD7甲乙两人有三个不同的学习小组, , 可以参加,若每人必须参加并且仅能参加一个学习小组,则两人参加同一个小组的概率为( )A B C D
4、8双曲线C:(,)的离心率是3,焦点到渐近线的距离为,则双曲线C的焦距为( )A3BC6D9已知函数,满足对任意的实数,都有成立,则实数的取值范围为( )ABCD10下图是来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形的斜边、直角边,已知以直角边为直径的半圆的面积之比为,记,则( )ABC1D11已知的内角的对边分别是且,若为最大边,则的取值范围是( )ABCD12若样本的平均数是10,方差为2,则对于样本,下列结论正确的是( )A平均数为20,方差为4B平均数为11,方差为4C平均数为21,方差为8D平均数为20,方差为8二、填空题:本题共4小
5、题,每小题5分,共20分。13如图所示梯子结构的点数依次构成数列,则_.14将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落.小球在下落的过程中,将3次遇到黑色障碍物,最后落入袋或袋中.己知小球每次遇到黑色障碍物时,向左、右两边下落的概率都是,则小球落入袋中的概率为_15如图,为测量出高,选择和另一座山的山顶为测量观测点,从点测得点的仰角,点的仰角以及;从点测得已知山高,则山高_16函数的定义域是 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,过点且平行与x轴的直线交椭圆于A、B两点,且.(1)求椭圆的标准方程;(2)过点M且斜率为正的直
6、线交椭圆于段C、D,直线AC、BD分别交直线于点E、F,求证:是定值.18(12分)在平面四边形中,已知,.(1)若,求的面积;(2)若求的长.19(12分)在中,.已知分别是的中点.将沿折起,使到的位置且二面角的大小是60,连接,如图:(1)证明:平面平面(2)求平面与平面所成二面角的大小.20(12分)已知函数,.(1)讨论的单调性;(2)当时,证明:.21(12分)选修4-5:不等式选讲已知函数.(1)设,求不等式的解集;(2)已知,且的最小值等于,求实数的值.22(10分)如图是圆的直径,垂直于圆所在的平面,为圆周上不同于的任意一点(1)求证:平面平面;(2)设为的中点,为上的动点(不
7、与重合)求二面角的正切值的最小值参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】运行程序,依次进行循环,结合判断框,可得输出值.【详解】起始阶段有,第一次循环后,第二次循环后,第三次循环后,第四次循环后,所有后面的循环具有周期性,周期为3,当时,再次循环输出的,,此时,循环结束,输出,故选:B【点睛】本题主要考查程序框图的相关知识,经过几次循环找出规律是关键,属于基础题型.2、B【解析】计算的和,然后除以,得到“5阶幻方”的幻和.【详解】依题意“5阶幻方”的幻和为,故选B.【点睛】本小题主要考查合情推理与演绎推理,考查
8、等差数列前项和公式,属于基础题.3、D【解析】 根据四个列联表中的等高条形图可知, 图中D中共享与不共享的企业经济活跃度的差异最大, 它最能体现共享经济对该部门的发展有显著效果,故选D4、A【解析】由得,然后分子分母同时乘以分母的共轭复数可得复数,从而可得的虚部.【详解】因为,所以,所以复数的虚部为.故选A.【点睛】本题考查了复数的除法运算和复数的概念,属于基础题.复数除法运算的方法是分子分母同时乘以分母的共轭复数,转化为乘法运算.5、A【解析】利用平面向量平行的坐标条件得到参数x的值.【详解】由题意得,解得.故选A.【点睛】本题考查向量平行定理,考查向量的坐标运算,属于基础题.6、A【解析】
9、由茎叶图中数据可求得中位数和平均数,即可判断,再根据数据集中程度判断.【详解】由茎叶图可得甲同学成绩的中位数为,乙同学成绩的中位数为,故错误;,则,故错误,正确;显然甲同学的成绩更集中,即波动性更小,所以方差更小,故正确,故选:A【点睛】本题考查由茎叶图分析数据特征,考查由茎叶图求中位数、平均数.7、A【解析】依题意,基本事件的总数有种,两个人参加同一个小组,方法数有种,故概率为.8、A【解析】根据焦点到渐近线的距离,可得,然后根据,可得结果.【详解】由题可知:双曲线的渐近线方程为取右焦点,一条渐近线则点到的距离为,由所以,则又所以所以焦距为:故选:A【点睛】本题考查双曲线渐近线方程,以及之间
10、的关系,识记常用的结论:焦点到渐近线的距离为,属基础题.9、B【解析】由题意可知函数为上为减函数,可知函数为减函数,且,由此可解得实数的取值范围.【详解】由题意知函数是上的减函数,于是有,解得,因此,实数的取值范围是故选:B.【点睛】本题考查利用分段函数的单调性求参数,一般要分析每支函数的单调性,同时还要考虑分段点处函数值的大小关系,考查运算求解能力,属于中等题.10、D【解析】根据以直角边为直径的半圆的面积之比求得,即的值,由此求得和的值,进而求得所求表达式的值.【详解】由于直角边为直径的半圆的面积之比为,所以,即,所以,所以.故选:D【点睛】本小题主要考查同角三角函数的基本关系式,考查二倍
11、角公式,属于基础题.11、C【解析】由,化简得到的值,根据余弦定理和基本不等式,即可求解.【详解】由,可得,可得,通分得,整理得,所以,因为为三角形的最大角,所以,又由余弦定理 ,当且仅当时,等号成立,所以,即,又由,所以的取值范围是.故选:C.【点睛】本题主要考查了代数式的化简,余弦定理,以及基本不等式的综合应用,试题难度较大,属于中档试题,着重考查了推理与运算能力.12、D【解析】由两组数据间的关系,可判断二者平均数的关系,方差的关系,进而可得到答案.【详解】样本的平均数是10,方差为2,所以样本的平均数为,方差为.故选:D.【点睛】样本的平均数是,方差为,则的平均数为,方差为.二、填空题
12、:本题共4小题,每小题5分,共20分。13、【解析】根据图像归纳,根据等差数列求和公式得到答案.【详解】根据图像:,故,故.故答案为:.【点睛】本题考查了等差数列的应用,意在考查学生的计算能力和应用能力.14、【解析】记小球落入袋中的概率,则,又小球每次遇到黑色障碍物时一直向左或者一直向右下落,小球将落入袋,所以有,则故本题应填15、1【解析】试题分析:在中,,,在中,由正弦定理可得即解得,在中,故答案为1考点:正弦定理的应用16、【解析】解:因为,故定义域为三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析.【解析】(1)由题意求得的坐标,代入椭圆方
13、程求得,由此求得椭圆的标准方程.(2)设出直线的方程,联立直线的方程和椭圆方程,可得关于的一元二次方程,设出的坐标,分别求出直线与直线的方程,从而求得两点的纵坐标,利用根与系数关系可化简证得为定值.【详解】(1)由已知可得:,代入椭圆方程得:椭圆方程为;(2)设直线CD的方程为,代入,得:设,则有,则AC的方程为,令,得BD的方程为,令,得,证毕.【点睛】本题考查椭圆方程的求法,考查直线与椭圆位置关系的应用,考查计算能力,是难题18、(1);(2).【解析】(1)在三角形中,利用余弦定理列方程,解方程求得的长,进而由三角形的面积公式求得三角形的面积.(2)利用诱导公式求得,进而求得,利用两角差
14、的正弦公式,求得,在三角形中利用正弦定理求得,在三角形中利用余弦定理求得的长.【详解】(1)在中,解得,.(2)在中,.【点睛】本小题主要考查正弦定理、余弦定理解三角形,考查三角形的面积公式,属于中档题.19、(1)证明见解析(2)45【解析】(1)设的中点为,连接,设的中点为,连接,从而即为二面角的平面角,推导出,从而平面,则,即,进而平面,推导四边形为平行四边形,从而,平面,由此即可得证.(2)以B为原点,在平面中过B作BE的垂线为x轴,BE为y轴,BA为z轴建立空间直角坐标系,利用向量法求出平面与平面所成二面角的大小.【详解】(1)是的中点,.设的中点为,连接.设的中点为,连接,.易证:
15、,即为二面角的平面角.,而为的中点.易知,为等边三角形,.,平面.而,平面,即.由,平面.分别为的中点.四边形为平行四边形.,平面,又平面.平面平面.(2)如图,建立空间直角坐标系,设.则,显然平面的法向量,设平面的法向量为,.,由图形观察可知,平面与平面所成的二面角的平面角为锐角.平面与平面所成的二面角大小为45.【点睛】本题主要考查立体几何中面面垂直的证明以及求解二面角大小,难度一般,通常可采用几何方法和向量方法两种进行求解.20、(1)见解析;(2)见解析【解析】(1)求导得,分类讨论和,利用导数研究含参数的函数单调性;(2)根据(1)中求得的的单调性,得出在处取得最大值为,构造函数,利
16、用导数,推出,即可证明不等式.【详解】解:(1)由于,得,当时,此时在上递增;当时,由,解得,若,则,若,此时在递增,在上递减.(2)由(1)知在处取得最大值为:,设,则,令,则,则在单调递减,即,则在单调递减,.【点睛】本题考查利用导数研究函数的单调性和最值,涉及分类讨论和构造新函数,通过导数证明不等式,考查转化思想和计算能力.21、 (1) (2) 【解析】(1)把f(x)去绝对值写成分段函数的形式,分类讨论,分别求得解集,综合可得结论(2)把f(x)去绝对值写成分段函数,画出f(x)的图像,找出利用条件求得a的值【详解】(1)时,.当时,即为,解得.当时, ,解得.当时, ,解得.综上,
17、的解集为.(2).,由的图象知,.【点睛】本题主要考查含绝对值不等式的解法及含绝对值的函数的最值问题,体现了分类讨论的数学思想,属于中档题22、(1)见解析(2)【解析】(1)推导出,从而平面,由面面垂直的判定定理即可得证(2)过作,以为坐标原点,建立如图所示空间坐标系,设,利用空间向量法表示出二面角的余弦值,当余弦值取得最大时,正切值求得最小值;【详解】(1)因为,面,平面,平面,平面,又平面,平面平面;(2)过作,以为坐标原点,建立如图所示空间坐标系,则,设,则平面的一个法向量为设平面的一个法向量为则,即,令,如图二面角的平面角为锐角,设二面角为,则,时取得最大值,最大值为,则最小值为【点睛】本题考查面面垂直的证明,利用空间向量法解决立体几何问题,属于中档题.