《安徽省涡阳县达标名校2023届中考冲刺卷数学试题含解析.doc》由会员分享,可在线阅读,更多相关《安徽省涡阳县达标名校2023届中考冲刺卷数学试题含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题(共10小题,每小题3分,共30分)1下列二次根式,最简二次根式是( )ABCD2如图,在正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,连接AF交CG于M点,则FM=()ABCD3如图,在中,面积是16,的垂直平分线分别交边于点,若点为边的中点,点为线段上一动点,则周长的最小值为( )A6B8C10D124如图是由5个大小相同的正方体组成的几何体,则该几何体的左视图是()ABCD5如图,已知ABC中,C=90,AC=BC=,将ABC绕点A顺时针方向旋转60到ABC的位置,连接CB,则CB的长为()ABCD16计算 的结果为()A1BxCD7直线yx4与x轴、y
3、轴分别交于点A和点B,点C,D分别为线段AB,OB的中点,点P为OA上一动点,PCPD值最小时点P的坐标为( )A(3,0)B(6,0)C(,0)D(,0)8如图,直线AB与半径为2的O相切于点C,D是O上一点,且EDC=30,弦EFAB,则EF的长度为( )A2B2CD29若函数y=kxb的图象如图所示,则关于x的不等式k(x3)b0的解集为()Ax2Bx2Cx5Dx510“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若,大正方形的面积为13,
4、则小正方形的面积为()A3B4C5D6二、填空题(本大题共6个小题,每小题3分,共18分)11若方程x22x10的两根分别为x1,x2,则x1+x2x1x2的值为_12计算:_13若am=2,an=3,则am + 2n =_14化简: _.15如图是某商品的标志图案,AC与BD是O的两条直径,首尾顺次连接点A、B、C、D,得到四边形ABCD,若AC=10cm,BAC=36,则图中阴影部分的面积为_16如图,O的直径AB=8,C为的中点,P为O上一动点,连接AP、CP,过C作CDCP交AP于点D,点P从B运动到C时,则点D运动的路径长为_三、解答题(共8题,共72分)17(8分)如图,O是RtA
5、BC的外接圆,C=90,tanB=,过点B的直线l是O的切线,点D是直线l上一点,过点D作DECB交CB延长线于点E,连接AD,交O于点F,连接BF、CD交于点G(1)求证:ACBBED;(2)当ADAC时,求 的值;(3)若CD平分ACB,AC=2,连接CF,求线段CF的长18(8分)如图,点是线段的中点,求证:19(8分)如图,在四边形ABCD中,E是AB的中点,AD/EC,AED=B求证:AEDEBC;当AB=6时,求CD的长20(8分)如图1,B(2m,0),C(3m,0)是平面直角坐标系中两点,其中m为常数,且m0,E(0,n)为y轴上一动点,以BC为边在x轴上方作矩形ABCD,使A
6、B=2BC,画射线OA,把ADC绕点C逆时针旋转90得ADC,连接ED,抛物线()过E,A两点(1)填空:AOB= ,用m表示点A的坐标:A( , );(2)当抛物线的顶点为A,抛物线与线段AB交于点P,且时,DOE与ABC是否相似?说明理由;(3)若E与原点O重合,抛物线与射线OA的另一个交点为点M,过M作MNy轴,垂足为N:求a,b,m满足的关系式;当m为定值,抛物线与四边形ABCD有公共点,线段MN的最大值为10,请你探究a的取值范围21(8分)在下列的网格图中.每个小正方形的边长均为1个单位,在RtABC中,C=90,AC=3,BC=4.(1)试在图中作出ABC以A为旋转中心,沿顺时针
7、方向旋转90后的图形AB1C1;(2)若点B的坐标为(-3,5),试在图中画出直角坐标系,并标出A、C两点的坐标;(3)根据(2)中的坐标系作出与ABC关于原点对称的图形A2B2C2,并标出B2、C2两点的坐标.22(10分) (1)计算:(ab)2a(a2b); (2)解方程:23(12分)如图1,抛物线y=ax2+bx+4过A(2,0)、B(4,0)两点,交y轴于点C,过点C作x轴的平行线与抛物线上的另一个交点为D,连接AC、BC点P是该抛物线上一动点,设点P的横坐标为m(m4)(1)求该抛物线的表达式和ACB的正切值;(2)如图2,若ACP=45,求m的值;(3)如图3,过点A、P的直线
8、与y轴于点N,过点P作PMCD,垂足为M,直线MN与x轴交于点Q,试判断四边形ADMQ的形状,并说明理由24(1)(ab)2a(a2b)+(2a+b)(2ab)(2)(m1)参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是【详解】A、被开方数含开的尽的因数,故A不符合题意;B、被开方数含分母,故B不符合题意;C、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C符合题意;D、被开方数含能开得尽方的因数或因式,故D不符合题意.故选C【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个
9、条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式2、C【解析】由正方形的性质知DG=CG-CD=2、ADGF,据此证ADMFGM得 , 求出GM的长,再利用勾股定理求解可得答案【详解】解:四边形ABCD和四边形CEFG是正方形,AD=CD=BC=1、CE=CG=GF=3,ADM=G=90,DG=CG-CD=2,ADGF,则ADMFGM,即 ,解得:GM= ,FM= = = ,故选:C【点睛】本题主要考查相似三角形的判定与性质,解题的关键是熟练掌握正方形的性质、相似三角形的判定与性质及勾股定理等知识点3、C【解析】连接AD,AM,由于ABC是等腰三角形,点D是BC的中点,故,在根据三角
10、形的面积公式求出AD的长,再根据EF是线段AC的垂直平分线可知,点A关于直线EF的对称点为点C,推出,故AD的长为BM+MD的最小值,由此即可得出结论【详解】连接AD,MAABC是等腰三角形,点D是BC边上的中点 解得EF是线段AC的垂直平分线点A关于直线EF的对称点为点CAD的长为BM+MD的最小值CDM的周长最短 故选:C【点睛】本题考查了三角形线段长度的问题,掌握等腰三角形的性质、三角形的面积公式、垂直平分线的性质是解题的关键4、B【解析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中【详解】解:从左面看易得下面一层有2个正方形,上面一层左边有1个正方形故选:B【点睛
11、】本题考查了三视图的知识,左视图是从物体的左面看得到的视图5、C【解析】延长BC交AB于D,根据等边三角形的性质可得BDAB,利用勾股定理列式求出AB,然后根据等边三角形的性质和等腰直角三角形的性质求出BD、CD,然后根据BC=BD-CD计算即可得解.【详解】解:延长BC交AB于D,连接BB,如图, 在RtACB中,AB=AC=2,BC垂直平分AB,CD=AB=1,BD为等边三角形ABB的高,BD=AB=,BC=BD-CD=-1故本题选择C.【点睛】熟练掌握勾股定理以及由旋转60得到ABB是等边三角形是解本题的关键.6、A【解析】根据同分母分式的加减运算法则计算可得【详解】原式=1,故选:A【
12、点睛】本题主要考查分式的加减法,解题的关键是掌握同分母分式的加减运算法则7、C【解析】作点D关于x轴的对称点D,连接CD交x轴于点P,此时PC+PD值最小,如图所示直线y=x+4与x轴、y轴的交点坐标为A(6,0)和点B(0,4),因点C、D分别为线段AB、OB的中点,可得点C(3,1),点D(0,1)再由点D和点D关于x轴对称,可知点D的坐标为(0,1)设直线CD的解析式为y=kx+b,直线CD过点C(3,1),D(0,1),所以,解得:,即可得直线CD的解析式为y=x1令y=x1中y=0,则0=x1,解得:x=,所以点P的坐标为(,0)故答案选C考点:一次函数图象上点的坐标特征;轴对称-最
13、短路线问题8、B【解析】本题考查的圆与直线的位置关系中的相切连接OC,EC所以EOC=2D=60,所以ECO为等边三角形又因为弦EFAB所以OC垂直EF故OEF=30所以EF=OE=29、C【解析】根据函数图象知:一次函数过点(2,0);将此点坐标代入一次函数的解析式中,可求出k、b的关系式;然后将k、b的关系式代入k(x3)b0中进行求解即可【详解】解:一次函数y=kxb经过点(2,0),2kb=0,b=2k函数值y随x的增大而减小,则k0;解关于k(x3)b0,移项得:kx3k+b,即kx1k;两边同时除以k,因为k0,因而解集是x1故选C【点睛】本题考查一次函数与一元一次不等式10、C【
14、解析】如图所示,(a+b)2=21a2+2ab+b2=21,大正方形的面积为13,2ab=2113=8,小正方形的面积为138=1故选C考点:勾股定理的证明二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解析】根据题意得x1+x2=2,x1x2=1,所以x1+x2x1x2=2(1)=1故答案为112、【解析】根据异分母分式加减法法则计算即可【详解】原式故答案为:【点睛】本题考查了分式的加减,关键是掌握分式加减的计算法则13、18【解析】运用幂的乘方和积的乘方的运算法则求解即可.【详解】解:am=2,an=3,a3m+2n=(am)3(an)2=2332=1故答案为1【点睛】本题考
15、查了幂的乘方和积的乘方,掌握运算法则是解答本题的关键14、a+b【解析】将原式通分相减,然后用平方差公式分解因式,再约分化简即可。【详解】解:原式=a+b【点睛】此题主要考查了分式的混合运算,熟练掌握运算法则是解本题的关键15、10cm1【解析】根据已知条件得到四边形ABCD是矩形,求得图中阴影部分的面积=S扇形AOD+S扇形BOC=1S扇形AOD,根据等腰三角形的性质得到BAC=ABO=36,由圆周角定理得到AOD=71,于是得到结论【详解】解:AC与BD是O的两条直径,ABC=ADC=DAB=BCD=90,四边形ABCD是矩形,SABO=SCDO =SAOD=SBOD,图中阴影部分的面积=
16、S扇形AOD+S扇形BOC=1S扇形AOD,OA=OB,BAC=ABO=36,AOD=71,图中阴影部分的面积=1=10,故答案为10cm1点睛:本题考查了扇形的面积,矩形的判定和性质,圆周角定理的推论,三角形外角的性质,熟练掌握扇形的面积公式是解题的关键16、 【解析】分析:以AC为斜边作等腰直角三角形ACQ,则AQC=90,依据ADC=135,可得点D的运动轨迹为以Q为圆心,AQ为半径的,依据ACQ中,AQ=4,即可得到点D运动的路径长为=2详解:如图所示,以AC为斜边作等腰直角三角形ACQ,则AQC=90O的直径为AB,C为的中点,APC=45又CDCP,DCP=90,PDC=45,AD
17、C=135,点D的运动轨迹为以Q为圆心,AQ为半径的又AB=8,C为的中点,AC=4,ACQ中,AQ=4,点D运动的路径长为=2 故答案为2 点睛:本题考查了轨迹,等腰直角三角形的性质,圆周角定理以及弧长的计算,正确作出辅助线是解题的关键三、解答题(共8题,共72分)17、(1)详见解析;(2) ;(3).【解析】(1)只要证明ACB=E,ABC=BDE即可;(2)首先证明BE:DE:BC=1:2:4,由GCBGDF,可得=;(3)想办法证明AB垂直平分CF即可解决问题.【详解】(1)证明:如图1中,DECB,ACB=E=90,BD是切线,ABBD,ABD=90,ABC+DBE=90,BDE+
18、DBE=90,ABC=BDE,ACBBED;(2)解:如图2中,ACBBED;四边形ACED是矩形,BE:DE:BC=1:2:4,DFBC,GCBGDF,=;(3)解:如图3中,tanABC=,AC=2,BC=4,BE=4,DE=8,AB=2,BD=4,易证DBEDBF,可得BF=4=BC,AC=AF=2,CFAB,设CF交AB于H,则CF=2CH=2.【点睛】本题考查相似三角形的判定和性质、圆周角定理、切线的性质、解直角三角形、线段的垂直平分线的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,所以中考常考题型18、详见解析【解析】利用 证明 即可解决问题【详解】证明:是线段的中点在和
19、中,【点睛】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形的全等的条件,属于中考常考题型19、(1)证明见解析;(2)CD =3【解析】分析: (1)根据二直线平行同位角相等得出A=BEC,根据中点的定义得出AE=BE,然后由ASA判断出AEDEBC;(2)根据全等三角形对应边相等得出AD=EC,然后根据一组对边平行且相等的四边形是平行四边形得出四边形AECD是平行四边形,根据平行四边形的对边相等得出答案.详解:(1)证明 :ADECA=BECE是AB中点,AE=BEAED=BAEDEBC(2)解 :AEDEBCAD=ECADEC四边形AECD是平行四边形CD=AEAB=6CD
20、= AB=3点睛: 本题考查全等三角形的判定和性质、平行四边形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.20、(1)45;(m,m);(2)相似;(3);【解析】试题分析:(1)由B与C的坐标求出OB与OC的长,进一步表示出BC的长,再证三角形AOB为等腰直角三角形,即可求出所求角的度数;由旋转的性质得,即可确定出A坐标;(2)DOEABC表示出A与B的坐标,由,表示出P坐标,由抛物线的顶点为A,表示出抛物线解析式,把点E坐标代入即可得到m与n的关系式,利用三角形相似即可得证;(3)当E与原点重合时,把A与E坐标代入,整理即可得到a,b,m的关系式;抛物线与
21、四边形ABCD有公共点,可得出抛物线过点C时的开口最大,过点A时的开口最小,分两种情况考虑:若抛物线过点C(3m,0),此时MN的最大值为10,求出此时a的值;若抛物线过点A(2m,2m),求出此时a的值,即可确定出抛物线与四边形ABCD有公共点时a的范围试题解析:(1)B(2m,0),C(3m,0),OB=2m,OC=3m,即BC=m,AB=2BC,AB=2m=0B,ABO=90,ABO为等腰直角三角形,AOB=45,由旋转的性质得:OD=DA=m,即A(m,m);故答案为45;m,m;(2)DOEABC,理由如下:由已知得:A(2m,2m),B(2m,0),P(2m,m),A为抛物线的顶点
22、,设抛物线解析式为,抛物线过点E(0,n),即m=2n,OE:OD=BC:AB=1:2,EOD=ABC=90,DOEABC;(3)当点E与点O重合时,E(0,0),抛物线过点E,A,整理得:,即;抛物线与四边形ABCD有公共点,抛物线过点C时的开口最大,过点A时的开口最小,若抛物线过点C(3m,0),此时MN的最大值为10,a(3m)2(1+am)3m=0,整理得:am=,即抛物线解析式为,由A(2m,2m),可得直线OA解析式为y=x,联立抛物线与直线OA解析式得:,解得:x=5m,y=5m,即M(5m,5m),令5m=10,即m=2,当m=2时,a=;若抛物线过点A(2m,2m),则,解得
23、:am=2,m=2,a=1,则抛物线与四边形ABCD有公共点时a的范围为考点:1二次函数综合题;2压轴题;3探究型;4最值问题21、(1)作图见解析;(2)如图所示,点A的坐标为(0,1),点C的坐标为(-3,1);(3)如图所示,点B2的坐标为(3,-5),点C2的坐标为(3,-1).【解析】(1)分别作出点B个点C旋转后的点,然后顺次连接可以得到;(2)根据点B的坐标画出平面直角坐标系;(3)分别作出点A、点B、点C关于原点对称的点,然后顺次连接可以得到.【详解】(1)A如图所示;(2)如图所示,A(0,1),C(3,1);(3)如图所示,(3,5),(3,1)22、 (1) b2 (2)
24、1【解析】分析:(1)、根据完全平方公式以及多项式的乘法计算法则将括号去掉,然后进行合并同类项即可得出答案;(2)、收下进行去分母,将其转化为整式方程,从而得出方程的解,最后需要进行验根详解:(1) 解:原式a22abb2a22ab b2 ;(2) 解:, 解得:x1, 经检验 x1为原方程的根, 所以原方程的解为x1点睛:本题主要考查的是多项式的乘法以及解分式方程,属于基础题型理解计算法则是解题的关键分式方程最后必须要进行验根23、(1)y=x23x+1;tanACB=;(2)m=;(3)四边形ADMQ是平行四边形;理由见解析.【解析】(1)由点A、B坐标利用待定系数法求解可得抛物线解析式为
25、y=x2-3x+1,作BGCA,交CA的延长线于点G,证GABOAC得=,据此知BG=2AG在RtABG中根据BG2+AG2=AB2,可求得AG=继而可得BG=,CG=AC+AG=,根据正切函数定义可得答案;(2)作BHCD于点H,交CP于点K,连接AK,易得四边形OBHC是正方形,应用“全角夹半角”可得AK=OA+HK,设K(1,h),则BK=h,HK=HB-KB=1-h,AK=OA+HK=2+(1-h)=6-h在RtABK中,由勾股定理求得h=,据此求得点K(1,)待定系数法求出直线CK的解析式为y=-x+1设点P的坐标为(x,y)知x是方程x2-3x+1=-x+1的一个解解之求得x的值即
26、可得出答案;(3)先求出点D坐标为(6,1),设P(m,m2-3m+1)知M(m,1),H(m,0)及PH=m2-3m+1),OH=m,AH=m-2,MH=1当1m6时,由OANHAP知=据此得ON=m-1再证ONQHMQ得=据此求得OQ=m-1从而得出AQ=DM=6-m结合AQDM可得答案当m6时,同理可得【详解】解:(1)将点A(2,0)和点B(1,0)分别代入y=ax2+bx+1,得,解得:;该抛物线的解析式为y=x23x+1,过点B作BGCA,交CA的延长线于点G(如图1所示),则G=90COA=G=90,CAO=BAG,GABOAC=2BG=2AG,在RtABG中,BG2+AG2=A
27、B2,(2AG)2+AG2=22,解得: AG=BG=,CG=AC+AG=2+=在RtBCG中,tanACB(2)如图2,过点B作BHCD于点H,交CP于点K,连接AK易得四边形OBHC是正方形应用“全角夹半角”可得AK=OA+HK,设K(1,h),则BK=h,HK=HBKB=1h,AK=OA+HK=2+(1h)=6h,在RtABK中,由勾股定理,得AB2+BK2=AK2,22+h2=(6h)2解得h=,点K(1,),设直线CK的解析式为y=hx+1,将点K(1,)代入上式,得=1h+1解得h=,直线CK的解析式为y=x+1,设点P的坐标为(x,y),则x是方程x23x+1=x+1的一个解,将
28、方程整理,得3x216x=0,解得x1=,x2=0(不合题意,舍去)将x1=代入y=x+1,得y=,点P的坐标为(,),m=;(3)四边形ADMQ是平行四边形理由如下:CDx轴,yC=yD=1,将y=1代入y=x23x+1,得1=x23x+1,解得x1=0,x2=6,点D(6,1),根据题意,得P(m, m23m+1),M(m,1),H(m,0),PH=m23m+1,OH=m,AH=m2,MH=1,当1m6时,DM=6m,如图3,OANHAP,=,ON=m1,ONQHMQ,OQ=m1,AQ=OAOQ=2(m1)=6m,AQ=DM=6m,又AQDM,四边形ADMQ是平行四边形当m6时,同理可得:四边形ADMQ是平行四边形综上,四边形ADMQ是平行四边形【点睛】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、相似三角形的判定与性质、平行四边形的判定与性质及勾股定理、三角函数等知识点24、(1) ;(2) 【解析】试题分析:(1)先去括号,再合并同类项即可;(2)先计算括号里的,再将除法转换在乘法计算.试题解析:(1)(ab)2a(a2b)+(2a+b)(2ab)=a22ab+b2a2+2ab+4a2b2=4a2;(2)= = = =