《四川省资阳市川中丘陵地区信息化试点班级2022-2023学年高三第一次调研测试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《四川省资阳市川中丘陵地区信息化试点班级2022-2023学年高三第一次调研测试数学试卷含解析.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数在区间上恰有四个不同的零点,则实数的取值范围是( )ABCD2记集合和集合表示的平面区域分别是和,若在区域内任取一点,则该点落在区域的概率为( )ABCD3若复数在复平面内对应的点在第二象限,则实数的取值范围是( )ABCD4甲、乙两名学生的
2、六次数学测验成绩(百分制)的茎叶图如图所示.甲同学成绩的中位数大于乙同学成绩的中位数;甲同学的平均分比乙同学的平均分高;甲同学的平均分比乙同学的平均分低;甲同学成绩的方差小于乙同学成绩的方差.以上说法正确的是( )ABCD5已知实数、满足约束条件,则的最大值为( )ABCD6关于函数,下列说法正确的是( )A函数的定义域为B函数一个递增区间为C函数的图像关于直线对称D将函数图像向左平移个单位可得函数的图像7已知、是双曲线的左右焦点,过点与双曲线的一条渐近线平行的直线交双曲线另一条渐近线于点,若点在以线段为直径的圆外,则双曲线离心率的取值范围是( )ABCD8从集合中随机选取一个数记为,从集合中
3、随机选取一个数记为,则在方程表示双曲线的条件下,方程表示焦点在轴上的双曲线的概率为( )ABCD9已知集合,若,则的最小值为( )A1B2C3D410在复平面内,复数对应的点的坐标为( )ABCD11已知圆与抛物线的准线相切,则的值为()A1B2CD412 “且”是“”的( )A充分非必要条件B必要非充分条件C充要条件D既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13已知是等比数列,且,则_,的最大值为_14在棱长为6的正方体中,是的中点,点是面,所在平面内的动点,且满足,则三棱锥的体积的最大值是_.15已知函数在定义域R上的导函数为,若函数没有零点,且,当在上与在R上
4、的单调性相同时,则实数k的取值范围是_.16已知为等差数列,为其前n项和,若,则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在ABC中,角A,B,C的对边分别为a,b,c,且b(a2+c2b2)a2ccosC+ac2cosA(1)求角B的大小;(2)若ABC外接圆的半径为,求ABC面积的最大值.18(12分)已知(1)已知关于的不等式有实数解,求的取值范围;(2)求不等式的解集19(12分)如图,在三棱柱中,、分别是、的中点.(1)证明:平面;(2)若底面是正三角形,在底面的投影为,求到平面的距离.20(12分)已知为等差数列,为等比数列,的前n项和为,满足
5、,.(1)求数列和的通项公式;(2)令,数列的前n项和,求.21(12分)已知函数,其中,为自然对数的底数(1)当时,求函数的极值;(2)设函数的导函数为,求证:函数有且仅有一个零点22(10分)如图在棱锥中,为矩形,面,(1)在上是否存在一点,使面,若存在确定点位置,若不存在,请说明理由;(2)当为中点时,求二面角的余弦值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】函数的零点就是方程的解,设,方程可化为,即或,求出的导数,利用导数得出函数的单调性和最值,由此可根据方程解的个数得出的范围【详解】由题意得有四个大于
6、的不等实根,记,则上述方程转化为,即,所以或因为,当时,单调递减;当时,单调递增;所以在处取得最小值,最小值为因为,所以有两个符合条件的实数解,故在区间上恰有四个不相等的零点,需且故选:A【点睛】本题考查复合函数的零点考查转化与化归思想,函数零点转化为方程的解,方程的解再转化为研究函数的性质,本题考查了学生分析问题解决问题的能力2、C【解析】据题意可知,是与面积有关的几何概率,要求落在区域内的概率,只要求、所表示区域的面积,然后代入概率公式,计算即可得答案【详解】根据题意可得集合所表示的区域即为如图所表示:的圆及内部的平面区域,面积为,集合,表示的平面区域即为图中的,根据几何概率的计算公式可得
7、,故选:C【点睛】本题主要考查了几何概率的计算,本题是与面积有关的几何概率模型解决本题的关键是要准确求出两区域的面积3、B【解析】复数,在复平面内对应的点在第二象限,可得关于a的不等式组,解得a的范围.【详解】,由其在复平面对应的点在第二象限,得,则.故选:B.【点睛】本题考查了复数的运算法则、几何意义、不等式的解法,考查了推理能力与计算能力,属于基础题4、A【解析】由茎叶图中数据可求得中位数和平均数,即可判断,再根据数据集中程度判断.【详解】由茎叶图可得甲同学成绩的中位数为,乙同学成绩的中位数为,故错误;,则,故错误,正确;显然甲同学的成绩更集中,即波动性更小,所以方差更小,故正确,故选:A
8、【点睛】本题考查由茎叶图分析数据特征,考查由茎叶图求中位数、平均数.5、C【解析】作出不等式组表示的平面区域,作出目标函数对应的直线,结合图象知当直线过点时,取得最大值.【详解】解:作出约束条件表示的可行域是以为顶点的三角形及其内部,如下图表示:当目标函数经过点时,取得最大值,最大值为.故选:C.【点睛】本题主要考查线性规划等基础知识;考查运算求解能力,数形结合思想,应用意识,属于中档题.6、B【解析】化简到,根据定义域排除,计算单调性知正确,得到答案.【详解】,故函数的定义域为,故错误;当时,函数单调递增,故正确;当,关于的对称的直线为不在定义域内,故错误.平移得到的函数定义域为,故不可能为
9、,错误.故选:.【点睛】本题考查了三角恒等变换,三角函数单调性,定义域,对称,三角函数平移,意在考查学生的综合应用能力.7、A【解析】双曲线=1的渐近线方程为y=x,不妨设过点F1与双曲线的一条渐过线平行的直线方程为y=(xc),与y=x联立,可得交点M(,),点M在以线段F1F1为直径的圆外,|OM|OF1|,即有+c1,3,即b13a1,c1a13a1,即c1a则e=1双曲线离心率的取值范围是(1,+)故选:A点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a,b,c的方程或不等式,再根据a,b,c的关系消掉b得到a,c的关系式,建立关于a,b,c的方程或不等式,要充分
10、利用椭圆和双曲线的几何性质、点的坐标的范围等.8、A【解析】设事件A为“方程表示双曲线”,事件B为“方程表示焦点在轴上的双曲线”,分别计算出,再利用公式计算即可.【详解】设事件A为“方程表示双曲线”,事件B为“方程表示焦点在轴上的双曲线”,由题意,则所求的概率为.故选:A.【点睛】本题考查利用定义计算条件概率的问题,涉及到双曲线的定义,是一道容易题.9、B【解析】解出,分别代入选项中 的值进行验证.【详解】解:,.当 时,,此时不成立.当 时,,此时成立,符合题意.故选:B.【点睛】本题考查了不等式的解法,考查了集合的关系.10、C【解析】利用复数的运算法则、几何意义即可得出【详解】解:复数i
11、(2+i)2i1对应的点的坐标为(1,2),故选:C【点睛】本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题11、B【解析】因为圆与抛物线的准线相切,则圆心为(3,0),半径为4,根据相切可知,圆心到直线的距离等于 半径,可知的值为2,选B.【详解】请在此输入详解!12、A【解析】画出“,所表示的平面区域,即可进行判断.【详解】如图,“且”表示的区域是如图所示的正方形,记为集合P,“”表示的区域是单位圆及其内部,记为集合Q,显然是的真子集,所以答案是充分非必要条件,故选:.【点睛】本题考查了不等式表示的平面区域问题,考查命题的充分条件和必要条件的判断,难度较易.二、填空
12、题:本题共4小题,每小题5分,共20分。13、5 【解析】 ,即的最大值为14、【解析】根据与相似,过作于,利用体积公式求解OP最值,根据勾股定理得出,利用函数单调性判断求解即可.【详解】在棱长为6的正方体中,是的中点,点是面所在平面内的动点,且满足,又,与相似,即,过作于,设,化简得:,根据函数单调性判断,时,取得最大值36,在正方体中平面.三棱锥体积的最大值为【点睛】本题考查三角形相似,几何体体积以及函数单调性的综合应用,难度一般.15、【解析】由题意可知:为上的单调函数,则为定值,由指数函数的性质可知为上的增函数,则在,单调递增,求导,则恒成立,则,根据函数的正弦函数的性质即可求得的取值
13、范围【详解】若方程无解,则或恒成立,所以为上的单调函数,都有,则为定值,设,则,易知为上的增函数,又与的单调性相同,在上单调递增,则当,恒成立,当,时,此时,故答案为:【点睛】本题考查导数的综合应用,考查利用导数求函数的单调性,正弦函数的性质,辅助角公式,考查计算能力,属于中档题16、1【解析】试题分析:因为是等差数列,所以,即,又,所以,所以故答案为1【考点】等差数列的基本性质【名师点睛】在等差数列五个基本量,中,已知其中三个量,可以根据已知条件,结合等差数列的通项公式、前项和公式列出关于基本量的方程(组)来求余下的两个量,计算时须注意整体代换思想及方程思想的应用.三、解答题:共70分。解答
14、应写出文字说明、证明过程或演算步骤。17、(1)B(2)【解析】(1)由已知结合余弦定理,正弦定理及和两角和的正弦公式进行化简可求cosB,进而可求B;(2)由已知结合正弦定理,余弦定理及基本不等式即可求解ac的范围,然后结合三角形的面积公式即可求解.【详解】(1)因为b(a2+c2b2)ca2cosC+ac2cosA,即2bcosBacosC+ccosA由正弦定理可得,2sinBcosBsinAcosC+sinCcosAsin(A+C)sinB,因为,所以,所以B;(2)由正弦定理可得,b2RsinB2,由余弦定理可得,b2a2+c22accosB,即a2+c2ac4,因为a2+c22ac,
15、所以4a2+c2acac,当且仅当ac时取等号,即ac的最大值4,所以ABC面积S即面积的最大值.【点睛】本题综合考查了正弦定理,余弦定理及三角形的面积公式在求解三角形中的应用,属于中档题.18、(1);(2).【解析】(1)依据能成立问题知,然后利用绝对值三角不等式求出的最小值,即求得的取值范围;(2)按照零点分段法解含有两个绝对值的不等式即可。【详解】因为不等式有实数解,所以因为,所以故。当时,所以,故当时,所以,故当时,所以,故综上,原不等式的解集为。【点睛】本题主要考查不等式有解问题的解法以及含有两个绝对值的不等式问题的解法,意在考查零点分段法、绝对值三角不等式和转化思想、分类讨论思想
16、的应用。19、(1)证明见解析;(2).【解析】(1)连接,连接、交于点,并连接,则点为的中点,利用中位线的性质得出,利用空间平行线的传递性可得出,然后利用线面平行的判定定理可证得结论;(2)推导出平面,并计算出,由此可得出到平面的距离为,即可得解.【详解】(1)连接,连接、交于点,并连接,则点为的中点,、分别为、的中点,则,同理可得,.平面,平面,因此,平面;(2)由于在底面的投影为,平面,平面,为正三角形,且为的中点,平面,且,因此,到平面的距离为.【点睛】本题考查线面平行的证明,同时也考查了点到平面距离的计算,考查推理能力与计算能力,属于中等题.20、(1),;(2)【解析】(1)设的公
17、差为,的公比为,由基本量法列式求出后可得通项公式;(2)奇数项分一组用裂项相消法求和,偶数项分一组用等比数列求和公式求和【详解】(1)设的公差为,的公比为,由,.得:,解得,;(2)由,得,为奇数时,为偶数时,【点睛】本题考查求等差数列和等比数列的通项公式,考查分组求和法及裂项相消法、等差数列与等比数列的前项和公式,求通项公式采取的是基本量法,即求出公差、公比,由通项公式前项和公式得出相应结论数列求和问题,对不是等差数列或等比数列的数列求和,需掌握一些特殊方法:错位相减法,裂项相消法,分组(并项)求和法,倒序相加法等等21、见解析【解析】(1)当时,函数,其定义域为,则,设,易知函数在上单调递
18、增,且,所以当时,即;当时,即,所以函数在上单调递减,在上单调递增,所以函数在处取得极小值,为,无极大值(2)由题可得函数的定义域为,设,显然函数在上单调递增,当时,所以函数在内有一个零点,所以函数有且仅有一个零点;当时,所以函数有且仅有一个零点,所以函数有且仅有一个零点;当时,因为,所以,又,所以函数在内有一个零点,所以函数有且仅有一个零点综上,函数有且仅有一个零点22、(1)见解析;(2)【解析】(1)要证明PC面ADE,由已知可得ADPC,只需满足即可,从而得到点E为中点;(2)求出面ADE的法向量,面PAE的法向量,利用空间向量的数量积,求解二面角PAED的余弦值【详解】(1)法一:要证明PC面ADE,易知AD面PDC,即得ADPC,故只需即可,所以由,即存在点E为PC中点. 法二:建立如图所示的空间直角坐标系DXYZ, 由题意知PDCD1,设, ,由,得,即存在点E为PC中点.(2)由(1)知, ,设面ADE的法向量为,面PAE的法向量为由的法向量为得,得,同理求得 所以,故所求二面角PAED的余弦值为.【点睛】本题考查二面角的平面角的求法,考查直线与平面垂直的判定定理的应用,考查空间想象能力以及计算能力