《安徽省宿州市XX中学2023年中考适应性考试数学试题含解析.doc》由会员分享,可在线阅读,更多相关《安徽省宿州市XX中学2023年中考适应性考试数学试题含解析.doc(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1一、单选题二次函数的图象如图所示,对称轴为x=1,给出下列结论:abc4ac;4a+2b+c0;2a+b=0.其中正确的结论有:A4个B3个C2个D1个2如图,在ABCD中,DAB的平分线交CD于点E,交BC的延长线于点G
2、,ABC的平分线交CD于点F,交AD的延长线于点H,AG与BH交于点O,连接BE,下列结论错误的是()ABO=OH BDF=CE CDH=CG DAB=AE3如图,在ABCD中,AB=6,AD=9,BAD的平分线交BC于点E,交DC的延长线于点F,BGAE,垂足为G,若BG=,则CEF的面积是()ABCD4如图,在平行四边形ABCD中,都不一定 成立的是()AO=CO;ACBD;ADBC;CAB=CADA和B和C和D和5(2011黑河)已知二次函数y=ax2+bx+c(a0)的图象如图所示,现有下列结论:b24ac0 a0 b0 c0 9a+3b+c0,则其中结论正确的个数是()A、2个B、3
3、个C、4个D、5个6有15位同学参加歌咏比赛,所得的分数互不相同,取得分前8位同学进入决赛某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这15位同学的()A平均数B中位数C众数D方差7如图由四个相同的小立方体组成的立体图像,它的主视图是( )ABCD8若a=,则实数a在数轴上对应的点的大致位置是()A点EB点FC点GD点H9剪纸是我国传统的民间艺术下列剪纸作品既不是中心对称图形,也不是轴对称图形的是( )ABCD10若关于的一元二次方程有两个不相等的实数根,则的取值范围( )ABC且D二、填空题(共7小题,每小题3分,满分21分)11如图,等边ABC的边长为6,ABC,ACB的角平
4、分线交于点D,过点D作EFBC,交AB、CD于点E、F,则EF的长度为_12在ABC中,若A,B满足|cosA|(sinB)20,则C_13已知关于x的方程x22xk0有两个相等的实数根,则k的值为_14如图,小红作出了边长为1的第1个正A1B1C1,算出了正A1B1C1的面积,然后分别取A1B1C1三边的中点A2,B2,C2,作出了第2个正A2B2C2,算出了正A2B2C2的面积,用同样的方法,作出了第3个正A3B3C3,算出了正A3B3C3的面积,由此可得,第8个正A8B8C8的面积是_15一个多边形,除了一个内角外,其余各角的和为2750,则这一内角为_度16将一张长方形纸片按如图所示的
5、方式折叠,BD、BE为折痕,若ABE20,则DBC为_度17如图,一根5m长的绳子,一端拴在围墙墙角的柱子上,另一端拴着一只小羊A(羊只能在草地上活动),那么小羊A在草地上的最大活动区域面积是_平方米三、解答题(共7小题,满分69分)18(10分)某中学响应“阳光体育”活动的号召,准备从体育用品商店购买一些排球、足球和篮球,排球和足球的单价相同,同一种球的单价相同,若购买2个足球和3个篮球共需340元,购买4个排球和5个篮球共需600元(1)求购买一个足球,一个篮球分别需要多少元?(2)该中学根据实际情况,需从体育用品商店一次性购买三种球共100个,且购买三种球的总费用不超过6000元,求这所
6、中学最多可以购买多少个篮球?19(5分)已知关于x的一元二次方程x2(m+3)x+m+2=1(1)求证:无论实数m取何值,方程总有两个实数根;(2)若方程两个根均为正整数,求负整数m的值20(8分)在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.求每台电脑、每台电子白板各多少万元?根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.21(10分)某市政府大力支持大学生创业李明在政府的扶持下投资销
7、售一种进价为20元的护眼台灯销售过程中发现,每月销售量Y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y10x+1设李明每月获得利润为W(元),当销售单价定为多少元时,每月获得利润最大?根据物价部门规定,这种护眼台灯不得高于32元,如果李明想要每月获得的利润2000元,那么销售单价应定为多少元?22(10分)已知:如图1在RtABC中,C=90,AC=8cm,BC=6cm,点P由点B出发沿BA方向向点A匀速运动,速度为2cm/s;同时点Q由点A出发沿AC方向点C匀速运动,速度为lcm/s;连接PQ,设运动的时间为t秒(0t5),解答下列问题:(1)当为t何值时,PQBC;(2)设AQ
8、P的面积为y(cm2),求y关于t的函数关系式,并求出y的最大值;(3)如图2,连接PC,并把PQC沿QC翻折,得到四边形PQPC,是否存在某时刻t,使四边形PQPC为菱形?若存在,求出此时t的值;若不存在,请说明理由23(12分)近年来,新能源汽车以其舒适环保、节能经济的优势受到热捧,随之而来的就是新能汽车销量的急速增加,当前市场上新能漂汽车从动力上分纯电动和混合动力两种,从用途上又分为乘用式和商用式两种,据中国汽车工业协会提供的信息,2017年全年新能源乘用车的累计销量为57.9万辆,其中,纯电动乘用车销量为46.8万辆,混合动力乘用车销量为11.1万辆; 2017年全年新能源商用车的累计
9、销量为19.8万辆,其中,纯电动商用车销量为18.4万辆,混合动力商用车销量为1.4万辆,请根据以上材料解答下列问题:(1)请用统计表表示我国2017年新能源汽车各类车型销量情况;(2)小颖根据上述信息,计算出2017年我国新能源各类车型总销量为77.7万辆,并绘制了“2017年我国新能源汽车四类车型销量比例”的扇形统计图,如图1,请你将该图补充完整(其中的百分数精确到0.1%);(3)2017年我国新能源乘用车销量最高的十个城市排名情况如图2,请根据图2中信息写出这些城市新能源乘用车销售情况的特点(写出一条即可);(4)数据显示,2018年13月的新能源乘用车总销量排行榜上位居前四的厂家是比
10、亚迪、北汽、上汽、江准,参加社会实践的大学生小王想对其中两个厂家进行深入调研,他将四个完全相同的乒乓球进行编号(用“1,2,3,4”依次对应上述四个厂家),并将乒乓球放入不透明的袋子中搅匀,从中一次拿出两个乒乓球,根据乒乓球上的编号决定要调研的厂家求小王恰好调研“比亚迪”和“江淮”这两个厂家的概率24(14分)M中学为创建园林学校,购买了若干桂花树苗,计划把迎宾大道的一侧全部栽上桂花树(两端必须各栽一棵),并且每两棵树的间隔相等,如果每隔5米栽1棵,则树苗缺11棵;如果每隔6米栽1棵,则树苗正好用完,求购买了桂花树苗多少棵?参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1
11、、B【解析】试题解析:二次函数的图象的开口向下,a0,二次函数图象的对称轴是直线x=1, 2a+b=0,b0abc04a+2b+c0,故错误;二次函数图象的对称轴是直线x=1,2a+b=0,故正确综上所述,正确的结论有3个.故选B.2、D【解析】解:四边形ABCD是平行四边形,AHBG,AD=BC,H=HBGHBG=HBA,H=HBA,AH=AB同理可证BG=AB,AH=BGAD=BC,DH=CG,故C正确AH=AB,OAH=OAB,OH=OB,故A正确DFAB,DFH=ABHH=ABH,H=DFH,DF=DH同理可证EC=CGDH=CG,DF=CE,故B正确无法证明AE=AB,故选D3、A【
12、解析】解:AE平分BAD,DAE=BAE;又四边形ABCD是平行四边形,ADBC,BEA=DAE=BAE,AB=BE=6,BGAE,垂足为G,AE=2AG在RtABG中,AGB=90,AB=6,BG=,AG=2,AE=2AG=4;SABE=AEBG=BE=6,BC=AD=9,CE=BCBE=96=3,BE:CE=6:3=2:1,ABFC,ABEFCE,SABE:SCEF=(BE:CE)2=4:1,则SCEF=SABE=故选A【点睛】本题考查1相似三角形的判定与性质;2平行四边形的性质,综合性较强,掌握相关性质定理正确推理论证是解题关键4、D【解析】四边形ABCD是平行四边形,AO=CO,故成立
13、;ADBC,故成立;利用排除法可得与不一定成立,当四边形是菱形时,和成立故选D.5、B【解析】分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据抛物线与x轴交点及x=1时二次函数的值的情况进行推理,进而对所得结论进行判断解答:解:根据图示知,二次函数与x轴有两个交点,所以=b2-4ac0;故正确;根据图示知,该函数图象的开口向上,a0;故正确;又对称轴x=-=1,0,b0;故本选项错误;该函数图象交于y轴的负半轴,c0;故本选项错误;根据抛物线的对称轴方程可知:(-1,0)关于对称轴的对称点是(3,0);当x=-1时,y0,所以当x=3时,也有y0,即9a
14、+3b+c0;故正确所以三项正确故选B6、B【解析】由中位数的概念,即最中间一个或两个数据的平均数;可知15人成绩的中位数是第8名的成绩根据题意可得:参赛选手要想知道自己是否能进入前8名,只需要了解自己的成绩以及全部成绩的中位数,比较即可【详解】解:由于15个人中,第8名的成绩是中位数,故小方同学知道了自己的分数后,想知道自己能否进入决赛,还需知道这十五位同学的分数的中位数故选B【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用7、D【解析】从正面看,共2列,左边是1个正方
15、形,右边是2个正方形,且下齐故选D.8、C【解析】根据被开方数越大算术平方根越大,可得答案【详解】解:,34,a=,3a4,故选:C【点睛】本题考查了实数与数轴,利用被开方数越大算术平方根越大得出34是解题关键9、A【解析】试题分析:根据轴对称图形和中心对称图形的概念可知:选项A既不是中心对称图形,也不是轴对称图形,故本选项正确;选项B不是中心对称图形,是轴对称图形,故本选项错误;选项C既是中心对称图形,也是轴对称图形,故本选项错误;选项D既是中心对称图形,也是轴对称图形,故本选项错误故选A考点:中心对称图形;轴对称图形10、C【解析】根据一元二次方程的定义结合根的判别式即可得出关于a的一元一
16、次不等式组,解之即可得出结论【详解】解:关于x的一元二次方程有两个不相等的实数根, ,解得:k1,由此即可证出:无论实数m取什么值,方程总有两个不相等的实数根;(2)利用分解因式法解原方程,可得x1=m,x2=m+1,在根据已知条件即可得出结论【详解】(1)=(m+3)24(m+2)=(m+1)2无论m取何值,(m+1)2恒大于等于1原方程总有两个实数根(2)原方程可化为:(x-1)(x-m-2)=1x1=1, x2=m+2方程两个根均为正整数,且m为负整数m=-1.【点睛】本题考查了一元二次方程与根的判别式,解题的关键是熟练的掌握根的判别式与根据因式分解法解一元二次方程.20、(1)每台电脑
17、0.5万元,每台电子白板1.5万元(2)见解析【解析】解:(1)设每台电脑x万元,每台电子白板y万元,根据题意得:,解得:。答:每台电脑0.5万元,每台电子白板1.5万元。(2)设需购进电脑a台,则购进电子白板(30a)台,则,解得:,即a=15,16,17。故共有三种方案:方案一:购进电脑15台,电子白板15台.总费用为万元;方案二:购进电脑16台,电子白板14台.总费用为万元;方案三:购进电脑17台,电子白板13台总费用为万元。方案三费用最低。(1)设电脑、电子白板的价格分别为x,y元,根据等量关系:“1台电脑+2台电子白板=3.5万元”,“2台电脑+1台电子白板=2.5万元”,列方程组求
18、解即可。(2)设计方案题一般是根据题意列出不等式组,求不等式组的整数解。设购进电脑x台,电子白板有(30x)台,然后根据题目中的不等关系“总费用不超过30万元,但不低于28万元”列不等式组解答。21、 (1)35元;(2)30元【解析】(1)由题意得,每月销售量与销售单价之间的关系可近似看作一次函数,利润=(定价-进价)销售量,从而列出关系式,利用配方法得出最值;(2)令w=2000,然后解一元二次方程,从而求出销售单价【详解】解:(1)由题意,得:W=(x-20)y=(x-20)(-10x+1)=-10x2+700x-10000=-10(x-35)2+2250 当x=35时,W取得最大值,最
19、大值为2250,答:当销售单价定为35元时,每月可获得最大利润为2250元; (2)由题意,得:,解得:, 销售单价不得高于32元, 销售单价应定为30元答:李明想要每月获得2000元的利润,销售单价应定为30元【点睛】本题考查二次函数的性质及其应用,还考查抛物线的基本性质,另外将实际问题转化为求函数最值问题,从而来解决实际问题22、(1)当t=时,PQBC;(2)(t)2+,当t=时,y有最大值为;(3)存在,当t=时,四边形PQPC为菱形【解析】(1)只要证明APQABC,可得=,构建方程即可解决问题;(2)过点P作PDAC于D,则有APDABC,理由相似三角形的性质构建二次函数即可解决问
20、题;(3)存在由APOABC,可得=,即=,推出OA=(5t),根据OC=CQ,构建方程即可解决问题;【详解】(1)在RtABC中,AB=10,BP=2t,AQ=t,则AP=102t,PQBC,APQABC,=,即=,解得t=,当t=时,PQBC(2)过点P作PDAC于D,则有APDABC,=,即=,PD=6t,y=t(6t)=(t)2+,当t=时,y有最大值为(3)存在理由:连接PP,交AC于点O四边形PQPC为菱形,OC=CQ,APOABC,=,即=,OA=(5t),8(5t)=(8t),解得t=,当t=时,四边形PQPC为菱形【点睛】本题考查四边形综合题、相似三角形的判定和性质、平行线的
21、性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会理由参数构建方程解决问题,属于中考压轴题23、(1)统计表见解析;(2)补全图形见解析;(3)总销量越高,其个人购买量越大;(4).【解析】(1)认真读题,找到题目中的相关信息量,列表统计即可;(2)分别求出“混动乘用”和“纯电动商用”的圆心角的度数,然后补扇形图即可;(3)根据图表信息写出一个符合条件的信息即可;(4)利用树状图确定求解概率.【详解】(1)统计表如下: 2017年新能源汽车各类型车型销量情况(单位:万辆)类型纯电动混合动力总计新能源乘用车46.811.157.9新能源商用车18.41.419.8
22、(2)混动乘用:100%14.3%,14.3%36051.5,纯电动商用:100%23.7%,23.7%36085.3,补全图形如下:(3)总销量越高,其个人购买量越大(4)画树状图如下:一共有12种等可能的情况数,其中抽中1、4的情况有2种,小王恰好调研“比亚迪”和“江淮”这两个厂家的概率为=【点睛】此题主要考查了数据的分析,利用统计表和扇形统计图表示数据的关系,以及用列表法或树状图法求概率,难度一般,注意认真阅读题目信息是关键.24、购买了桂花树苗1棵【解析】分析:首先设购买了桂花树苗x棵,然后根据题意列出一元一次方程,从而得出答案详解:设购买了桂花树苗x棵,根据题意,得:5(x+11-1)=6(x-1), 解得x=1答:购买了桂花树苗1棵点睛:本题主要考查的是一元一次方程的应用,属于基础题型解决这个问题的关键就是找出等量关系以及路的长度与树的棵树之间的关系