《山东省济南外国语学校三箭分校2023年高三下学期第五次调研考试数学试题含解析.doc》由会员分享,可在线阅读,更多相关《山东省济南外国语学校三箭分校2023年高三下学期第五次调研考试数学试题含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
2、1若,则( )ABCD2在中,分别为所对的边,若函数有极值点,则的范围是( )ABCD3如图1,九章算术中记载了一个“折竹抵地”问题:今有竹高一丈,末折抵地,去本三尺,问折者高几何? 意思是:有一根竹子, 原高一丈(1丈=10尺), 现被风折断,尖端落在地上,竹尖与竹根的距离三尺,问折断处离地面的高为( )尺. ABCD4如图,设为内一点,且,则与的面积之比为ABCD5设函数,则,的大致图象大致是的( )ABCD6已知向量与向量平行,且,则( )ABCD7在棱长为2的正方体ABCDA1B1C1D1中,P为A1D1的中点,若三棱锥PABC的四个顶点都在球O的球面上,则球O的表面积为( )A12p
3、BCD10p8设集合Ay|y2x1,xR,Bx|2x3,xZ,则AB( )A(1,3B1,3C0,1,2,3D1,0,1,2,39已知角的顶点为坐标原点,始边与轴的非负半轴重合,终边上有一点,则( )ABCD10等差数列的前项和为,若,则数列的公差为( )A-2B2C4D711已知圆关于双曲线的一条渐近线对称,则双曲线的离心率为( )ABCD12设双曲线的左右焦点分别为,点.已知动点在双曲线的右支上,且点不共线.若的周长的最小值为,则双曲线的离心率的取值范围是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知函数,则曲线在点处的切线方程是_14已知三棱锥的四个顶点都在球O的
4、球面上,E,F分别为,的中点,则球O的体积为_.15函数f(x)x2xlnx的图象在x1处的切线方程为_.16如果椭圆的对称轴为坐标轴,短轴的一个端点与两焦点组成一正三角形,焦点在x轴上,且=, 那么椭圆的方程是 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)追求人类与生存环境的和谐发展是中国特色社会主义生态文明的价值取向.为了改善空气质量,某城市环保局随机抽取了一年内100天的空气质量指数(AQI)的检测数据,结果统计如表:AQI空气质量优良轻度污染中度污染重度污染重度污染天数61418272510(1)从空气质量指数属于0,50,(50,100的天数中任取3天
5、,求这3天中空气质量至少有2天为优的概率;(2)已知某企业每天因空气质量造成的经济损失y(单位:元)与空气质量指数x的关系式为,假设该企业所在地7月与8月每天空气质量为优、良、轻度污染、中度污染、重度污染、严重污染的概率分别为.9月每天的空气质量对应的概率以表中100天的空气质量的频率代替.(i)记该企业9月每天因空气质量造成的经济损失为X元,求X的分布列;(ii)试问该企业7月、8月、9月这三个月因空气质量造成的经济损失总额的数学期望是否会超过2.88万元?说明你的理由.18(12分)已知数列满足,(1)求数列的通项公式;(2)若,求数列的前项和19(12分)如图,在直角中,通过以直线为轴顺
6、时针旋转得到().点为斜边上一点.点为线段上一点,且.(1)证明:平面;(2)当直线与平面所成的角取最大值时,求二面角的正弦值.20(12分)如图,在四棱柱中,平面平面,是边长为2的等边三角形,点为的中点()求证:平面;()求二面角的余弦值()在线段上是否存在一点,使直线与平面所成的角正弦值为,若存在求出的长,若不存在说明理由21(12分)已知函数(1)求单调区间和极值;(2)若存在实数,使得,求证:22(10分)已知是圆:的直径,动圆过,两点,且与直线相切.(1)若直线的方程为,求的方程;(2)在轴上是否存在一个定点,使得以为直径的圆恰好与轴相切?若存在,求出点的坐标;若不存在,请说明理由.
7、参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】利用指数函数和对数函数的单调性比较、三个数与和的大小关系,进而可得出、三个数的大小关系.【详解】对数函数为上的增函数,则,即;指数函数为上的增函数,则;指数函数为上的减函数,则.综上所述,.故选:C.【点睛】本题考查指数幂与对数式的大小比较,一般利用指数函数和对数函数的单调性结合中间值法来比较,考查推理能力,属于基础题.2、D【解析】试题分析:由已知可得有两个不等实根.考点:1、余弦定理;2、函数的极值.【方法点晴】本题考查余弦定理,函数的极值,涉及函数与方程思想思想、数
8、形结合思想和转化化归思想,考查逻辑思维能力、等价转化能力、运算求解能力,综合性较强,属于较难题型. 首先利用转化化归思想将原命题转化为有两个不等实根,从而可得.3、B【解析】如图,已知,解得, ,解得.折断后的竹干高为4.55尺故选B.4、A【解析】作交于点,根据向量比例,利用三角形面积公式,得出与的比例,再由与的比例,可得到结果.【详解】如图,作交于点,则,由题意,且,所以又,所以,即,所以本题答案为A.【点睛】本题考查三角函数与向量的结合,三角形面积公式,属基础题,作出合适的辅助线是本题的关键.5、B【解析】采用排除法:通过判断函数的奇偶性排除选项A;通过判断特殊点的函数值符号排除选项D和
9、选项C即可求解.【详解】对于选项A:由题意知,函数的定义域为,其关于原点对称,因为,所以函数为奇函数,其图象关于原点对称,故选A排除;对于选项D:因为,故选项D排除;对于选项C:因为,故选项C排除;故选:B【点睛】本题考查利用函数的奇偶性和特殊点函数值符号判断函数图象;考查运算求解能力和逻辑推理能力;选取合适的特殊点并判断其函数值符号是求解本题的关键;属于中档题、常考题型.6、B【解析】设,根据题意得出关于、的方程组,解出这两个未知数的值,即可得出向量的坐标.【详解】设,且,由得,即,由,所以,解得,因此,.故选:B.【点睛】本题考查向量坐标的求解,涉及共线向量的坐标表示和向量数量积的坐标运算
10、,考查计算能力,属于中等题.7、C【解析】取B1C1的中点Q,连接PQ,BQ,CQ,PD,则三棱柱BCQADP为直三棱柱,此直三棱柱和三棱锥PABC有相同的外接球,求出等腰三角形的外接圆半径,然后利用勾股定理可求出外接球的半径【详解】如图,取B1C1的中点Q,连接PQ,BQ,CQ,PD,则三棱柱BCQADP为直三棱柱,所以该直三棱柱的六个顶点都在球O的球面上,的外接圆直径为,球O的半径R满足,所以球O的表面积S=4R2=,故选:C.【点睛】此题考查三棱锥的外接球半径与棱长的关系,及球的表面积公式,解题时要注意审题,注意空间思维能力的培养,属于中档题.8、C【解析】先求集合A,再用列举法表示出集
11、合B,再根据交集的定义求解即可【详解】解:集合Ay|y2x1,xRy|y1,Bx|2x3,xZ2,1,0,1,2,3,AB0,1,2,3,故选:C【点睛】本题主要考查集合的交集运算,属于基础题9、B【解析】根据角终边上的点坐标,求得,代入二倍角公式即可求得的值.【详解】因为终边上有一点,所以,故选:B【点睛】此题考查二倍角公式,熟练记忆公式即可解决,属于简单题目.10、B【解析】在等差数列中由等差数列公式与下标和的性质求得,再由等差数列通项公式求得公差.【详解】在等差数列的前项和为,则则故选:B【点睛】本题考查等差数列中求由已知关系求公差,属于基础题.11、C【解析】将圆,化为标准方程为,求得
12、圆心为.根据圆关于双曲线的一条渐近线对称,则圆心在渐近线上,.再根据求解.【详解】已知圆,所以其标准方程为:,所以圆心为.因为双曲线,所以其渐近线方程为,又因为圆关于双曲线的一条渐近线对称,则圆心在渐近线上,所以.所以.故选:C【点睛】本题主要考查圆的方程及对称性,还有双曲线的几何性质 ,还考查了运算求解的能力,属于中档题.12、A【解析】依题意可得即可得到,从而求出双曲线的离心率的取值范围;【详解】解:依题意可得如下图象,所以则所以所以所以,即故选:A【点睛】本题考查双曲线的简单几何性质,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】求导,x=0代入求k,点斜式求
13、切线方程即可【详解】则又故切线方程为y=x+1故答案为y=x+1【点睛】本题考查切线方程,求导法则及运算,考查直线方程,考查计算能力,是基础题14、【解析】可证,则为的外心,又则平面即可求出,的值,再由勾股定理求出外接球的半径,最后根据体积公式计算可得.【详解】解:,因为为的中点,所以为的外心,因为,所以点在内的投影为的外心,所以平面,平面,所以,所以,又球心在上,设,则,所以,所以球O体积,.故答案为:【点睛】本题考查多面体外接球体积的求法,考查空间想象能力与思维能力,考查计算能力,属于中档题15、xy0.【解析】先将x1代入函数式求出切点纵坐标,然后对函数求导数,进一步求出切线斜率,最后利
14、用点斜式写出切线方程.【详解】由题意得.故切线方程为y1x1,即xy0.故答案为:xy0.【点睛】本题考查利用导数求切线方程的基本方法,利用切点满足的条件列方程(组)是关键.同时也考查了学生的运算能力,属于基础题.16、【解析】由题意可设椭圆方程为:短轴的一个端点与两焦点组成一正三角形,焦点在轴上又,椭圆的方程为,故答案为考点:椭圆的标准方程,解三角形以及解方程组的相关知识三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)(i)详见解析;(ii)会超过;详见解析【解析】(1)利用组合进行计算以及概率表示,可得结果.(2)(i)写出X所有可能取值,并计算相对应的概
15、率,列出表格可得结果.(ii)由(i)的条件结合7月与8月空气质量所对应的概率,可得7月与8月经济损失的期望和,最后7月、8月、9月经济损失总额的数学期望与2.88万元比较,可得结果.【详解】(1)设为选取的3天中空气质量为优的天数,则P(2),P(3),则这3天中空气质量至少有2天为优的概率为;(2)(i),X的分布列如下:X02201480P(ii)由(i)可得:E(X)02201480302(元),故该企业9月的经济损失的数学期望为30E(X),即30E(X)9060元,设7月、8月每天因空气质量造成的经济损失为Y元,可得:,E(Y)02201480320(元),所以该企业7月、8月这两
16、个月因空气质量造成经济损失总额的数学期望为320(31+31)19840(元),由19840+90602890028800,即7月、8月、9月这三个月因空气质量造成经济损失总额的数学期望会超过2.88万元.【点睛】本题考查概率中的分布列以及数学期望,属基础题。18、(1);(2)【解析】(1)根据递推公式,用配凑法构造等比数列,求其通项公式,进而求出的通项公式;(2)求出数列的通项公式,利用错位相减法求数列的前项和.【详解】解:(1),是首项为,公比为的等比数列所以,(2).【点睛】本题考查了由数列的递推公式求通项公式,错位相减法求数列的前n项和的问题,属于中档题.19、(1)见解析;(2)【
17、解析】(1)先算出的长度,利用勾股定理证明,再由已知可得,利用线面垂直的判定定理即可证明;(2)由(1)可得为直线与平面所成的角,要使其最大,则应最小,可得为中点,然后建系分别求出平面的法向量即可算得二面角的余弦值,进一步得到正弦值.【详解】(1)在中,由余弦定理得,由题意可知:,平面,平面,又,平面.(2)以为坐标原点,以,的方向为,轴的正方向,建立空间直角坐标系.平面,在平面上的射影是,与平面所成的角是,最大时,即,点为中点.,设平面的法向量,由,得,令,得,所以平面的法向量,同理,设平面的法向量,由,得,令,得,所以平面的法向量,故二面角的正弦值为.【点睛】本题考查线面垂直的判定定理以及
18、利用向量法求二面角的正弦值,考查学生的运算求解能力,是一道中档题.20、()证明见解析;();()线段上是存在一点,使直线与平面所成的角正弦值为.【解析】()取中点,连结、,推导出四边形是平行四边形,从而,由此能证明平面;()取中点,连结,推导出平面,以为原点,为轴,为轴,为轴,建立空间直角坐标系,利用向量法能求出二面角的余弦值;()假设在线段上是存在一点,使直线与平面所成的角正弦值为,设利用向量法能求出结果【详解】()证明:取中点,连结、,是边长为2的等边三角形,点为的中点,四边形是平行四边形,平面,平面,平面()解:取中点,连结,在四棱柱中,平面平面,是边长为2的等边三角形,点为的中点,平
19、面,以为原点,为轴,为轴,为轴,建立空间直角坐标系,1,0,1,0,0,设平面的法向量,则,取,得,设平面的法向量,则,取,得,设二面角的平面角为,则二面角的余弦值为()解:假设在线段上是存在一点,使直线与平面所成的角正弦值为,设则,平面的法向量,解得,线段上是存在一点,使直线与平面所成的角正弦值为【点睛】本题考查线面平行的证明,考查二面角的余弦值的求法,考查满足正弦值的点是否存在的判断与求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题21、(1)时,函数单调递增,函数单调递减,;(2)见解析【解析】(1)求出函数的定义域与导函数,利用导数求函数的单调区间,即
20、可得到函数的极值;(2)易得且,要证明,即证,即证,即对恒成立,构造函数,利用导数研究函数的单调性与最值,即可得证;【详解】解:(1)因为定义域为,所以,时,即在和上单调递增,当时,即函数在单调递减,所以在处取得极小值,在处取得极大值;,;(2)易得,要证明,即证,即证即证对恒成立,令,则令,解得,即在上单调递增;令,解得,即在上单调递减;则在取得极小值,也就是最小值, 从而结论得证.【点睛】本题考查利用导数研究函数的单调性与极值,利用导数证明不等式,考查运算求解能力,考查函数与方程思想,属于中档题22、(1)或. (2)存在,;【解析】(1)根据动圆过,两点,可得圆心在的垂直平分线上,由直线
21、的方程为,可知在直线上;设,由动圆与直线相切可得动圆的半径为;又由,及垂径定理即可确定的值,进而确定圆的方程.(2)方法一:设,可得圆的半径为,根据,可得方程为并化简可得的轨迹方程为.设,可得的中点,进而由两点间距离公式表示出半径,表示出到轴的距离,代入化简即可求得的值,进而确定所过定点的坐标;方法二:同上可得的轨迹方程为,由抛物线定义可求得,表示出线段的中点的坐标,根据到轴的距离可得等量关系,进而确定所过定点的坐标.【详解】(1)因为过点,所以圆心在的垂直平分线上.由已知的方程为,且,关于于坐标原点对称,所以在直线上,故可设.因为与直线相切,所以的半径为.由已知得,又,故可得,解得或.故的半径或,所以的方程为或.(2)法一:设,由已知得的半径为,.由于,故可得,化简得的轨迹方程为.设,则得,的中点,则以为直径的圆的半径为:,到轴的距离为,令,化简得,即,故当时,式恒成立.所以存在定点,使得以为直径的圆与轴相切.法二:设,由已知得的半径为,.由于,故可得,化简得的轨迹方程为.设,因为抛物线的焦点坐标为,点在抛物线上,所以,线段的中点的坐标为,则到轴的距离为,而,故以为径的圆与轴切,所以当点与重合时,符合题意,所以存在定点,使得以为直径的圆与轴相切.【点睛】本题考查了圆的标准方程求法,动点轨迹方程的求法,抛物线定义及定点问题的解法综合应用,属于难题.