《安徽省宣城市宣州区水阳中学初级中学2022-2023学年中考数学全真模拟试题含解析.doc》由会员分享,可在线阅读,更多相关《安徽省宣城市宣州区水阳中学初级中学2022-2023学年中考数学全真模拟试题含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(共10小题,每小题3分,共30分)1小明在一次登山活动中捡到一块矿石,回家后,他使用一把刻度尺,一只圆柱形的玻璃杯和足量的水,就测量出这块矿石的体积.如果他量出玻璃杯的内直径d,把矿石完全浸没在水中,测出杯中水面上升了高度h,则小明的这块矿石体积是( )ABCD2下列分子
2、结构模型的平面图中,既是轴对称图形又是中心对称图形的有()A1个B2个C3个D4个3下列各式中,正确的是( )At5t5 = 2t5 Bt4+t2 = t 6 Ct3t4 = t12 Dt2t3 = t54把图中的五角星图案,绕着它的中心点O进行旋转,若旋转后与自身重合,则至少旋转()A36B45C72D905某厂进行技术创新,现在每天比原来多生产30台机器,并且现在生产500台机器所需时间与原来生产350台机器所需时间相同设现在每天生产x台机器,根据题意可得方程为()ABCD6在,0,1这四个数中,最小的数是ABC0D17一个正多边形的内角和为900,那么从一点引对角线的条数是()A3B4C
3、5D68在平面直角坐标系xOy中,若点P(3,4)在O内,则O的半径r的取值范围是( )A0r3Br4C0r5Dr59如图,在矩形ABCD中,对角线AC,BD相交于点O,AEBD,垂足为E,AE=3,ED=3BE,则AB的值为()A6B5C2D310如图1,点E为矩形ABCD的边AD上一点,点P从点B出发沿BEEDDC运动到点C停止,点Q从点B出发沿BC运动到点C停止,它们运动的速度都是1cm/s若点P、Q同时开始运动,设运动时间为t(s),BPQ的面积为y(cm2),已知y与t之间的函数图象如图2所示给出下列结论:当0t10时,BPQ是等腰三角形;SABE=48cm2;14t22时,y=11
4、01t;在运动过程中,使得ABP是等腰三角形的P点一共有3个;当BPQ与BEA相似时,t=14.1其中正确结论的序号是()ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11如图,在矩形ABCD中,对角线BD的长为1,点P是线段BD上的一点,联结CP,将BCP沿着直线CP翻折,若点B落在边AD上的点E处,且EP/AB,则AB的长等于_12计算:12_13分解因式6xy29x2yy3 = _.14若一次函数y=2(x+1)+4的值是正数,则x的取值范围是_15函数中自变量的取值范围是_16分解因式:4m216n2_三、解答题(共8题,共72分)17(8分)某校组织了一次初三科技小制作
5、比赛,有ABC,D四个班共提供了100件参赛作品. C班提供的参赛作品的获奖率为50%,其他几个班的参赛作品情况及获奖情况绘制在下列图l和图2两幅尚不完整的统计图中 . (1)B班参赛作品有多少件?(2)请你将图的统计图补充完整;(3)通过计算说明,哪个班的获奖率高?(4)将写有A,B,C,D四个字母的完全相同的卡片放入箱中,从中一次随机抽出两张卡片,求抽到A,B两班的概率 .18(8分)已知抛物线F:y=x1+bx+c的图象经过坐标原点O,且与x轴另一交点为(,0)(1)求抛物线F的解析式;(1)如图1,直线l:y=x+m(m0)与抛物线F相交于点A(x1,y1)和点B(x1,y1)(点A在
6、第二象限),求y1y1的值(用含m的式子表示);(3)在(1)中,若m=,设点A是点A关于原点O的对称点,如图1判断AAB的形状,并说明理由;平面内是否存在点P,使得以点A、B、A、P为顶点的四边形是菱形?若存在,求出点P的坐标;若不存在,请说明理由19(8分)小明、小刚和小红打算各自随机选择本周日的上午或下午去扬州马可波罗花世界游玩小明和小刚都在本周日上午去游玩的概率为_;求他们三人在同一个半天去游玩的概率20(8分)工人小王生产甲、乙两种产品,生产产品件数与所用时间之间的关系如表:生产甲产品件数(件)生产乙产品件数(件)所用总时间(分钟)10103503020850(1)小王每生产一件甲种
7、产品和每生产一件乙种产品分别需要多少分钟?(2)小王每天工作8个小时,每月工作25天如果小王四月份生产甲种产品a件(a为正整数)用含a的代数式表示小王四月份生产乙种产品的件数;已知每生产一件甲产品可得1.50元,每生产一件乙种产品可得2.80元,若小王四月份的工资不少于1500元,求a的取值范围21(8分)综合与实践猜想、证明与拓广问题情境:数学课上同学们探究正方形边上的动点引发的有关问题,如图1,正方形ABCD中,点E是BC边上的一点,点D关于直线AE的对称点为点F,直线DF交AB于点H,直线FB与直线AE交于点G,连接DG,CG猜想证明(1)当图1中的点E与点B重合时得到图2,此时点G也与
8、点B重合,点H与点A重合同学们发现线段GF与GD有确定的数量关系和位置关系,其结论为: ;(2)希望小组的同学发现,图1中的点E在边BC上运动时,(1)中结论始终成立,为证明这两个结论,同学们展开了讨论:小敏:根据轴对称的性质,很容易得到“GF与GD的数量关系”小丽:连接AF,图中出现新的等腰三角形,如AFB,小凯:不妨设图中不断变化的角BAF的度数为n,并设法用n表示图中的一些角,可证明结论请你参考同学们的思路,完成证明;(3)创新小组的同学在图1中,发现线段CGDF,请你说明理由;联系拓广:(4)如图3若将题中的“正方形ABCD”变为“菱形ABCD“,ABC=,其余条件不变,请探究DFG的
9、度数,并直接写出结果(用含的式子表示)22(10分)某校在一次大课间活动中,采用了四种活动形式:A、跑步,B、跳绳,C、做操,D、游戏全校学生都选择了一种形式参与活动,小杰对同学们选用的活动形式进行了随机抽样调查,根据调查统计结果,绘制了不完整的统计图请结合统计图,回答下列问题:(1)本次调查学生共 人,a= ,并将条形图补充完整;(2)如果该校有学生2000人,请你估计该校选择“跑步”这种活动的学生约有多少人?(3)学校让每班在A、B、C、D四种活动形式中,随机抽取两种开展活动,请用树状图或列表的方法,求每班抽取的两种形式恰好是“跑步”和“跳绳”的概率23(12分)随着交通道路的不断完善,带
10、动了旅游业的发展,某市旅游景区有A、B、C、D、E等著名景点,该市旅游部门统计绘制出2017年“五一”长假期间旅游情况统计图,根据以下信息解答下列问题:(1)2017年“五一”期间,该市周边景点共接待游客 万人,扇形统计图中A景点所对应的圆心角的度数是 ,并补全条形统计图(2)根据近几年到该市旅游人数增长趋势,预计2018年“五一”节将有80万游客选择该市旅游,请估计有多少万人会选择去E景点旅游?(3)甲、乙两个旅行团在A、B、D三个景点中,同时选择去同一景点的概率是多少?请用画树状图或列表法加以说明,并列举所用等可能的结果24有一项工程,若甲队单独做,恰好在规定日期完成,若乙队单独做要超过规
11、定日期3天完成;现在先由甲、乙两队合做2天后,剩下的工程再由乙队单独做,也刚好在规定日期完成,问规定日期多少天?参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】圆柱体的底面积为:()2,矿石的体积为:()2h= .故答案为.2、C【解析】根据轴对称图形与中心对称图形的概念求解【详解】解:A是轴对称图形,不是中心对称图形;B,C,D是轴对称图形,也是中心对称图形故选:C【点睛】掌握中心对称图形与轴对称图形的概念:轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180,旋转后的图形能和原图
12、形完全重合,那么这个图形就叫做中心对称图形3、D【解析】选项A,根据同底数幂的乘法可得原式=t10;选项B,不是同类项,不能合并;选项C,根据同底数幂的乘法可得原式=t7;选项D,根据同底数幂的乘法可得原式=t5,四个选项中只有选项D正确,故选D.4、C【解析】分析:五角星能被从中心发出的射线平分成相等的5部分,再由一个周角是360即可求出最小的旋转角度详解:五角星可以被中心发出的射线平分成5部分,那么最小的旋转角度为:3605=72 故选C点睛:本题考查了旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫
13、做旋转角5、A【解析】根据现在生产500台机器所需时间与原计划生产350台机器所需时间相同,所以可得等量关系为:现在生产500台机器所需时间=原计划生产350台机器所需时间【详解】现在每天生产x台机器,则原计划每天生产(x30)台机器依题意得:,故选A【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.6、A【解析】【分析】根据正数大于零,零大于负数,正数大于一切负数,即可得答案【详解】由正数大于零,零大于负数,得,最小的数是,故选A【点睛】本题考查了有理数比较大小,利用好“正数大于零,零大于负数,两个负数绝对值大的反而小”是解题关键7、B【解析】n边形的内角和可以表
14、示成(n-2)180,设这个多边形的边数是n,就得到关于边数的方程,从而求出边数,再求从一点引对角线的条数.【详解】设这个正多边形的边数是n,则(n-2)180=900,解得:n=1则这个正多边形是正七边形所以,从一点引对角线的条数是:1-3=4.故选B【点睛】本题考核知识点:多边形的内角和.解题关键点:熟记多边形内角和公式.8、D【解析】先利用勾股定理计算出OP=1,然后根据点与圆的位置关系的判定方法得到r的范围【详解】点P的坐标为(3,4),OP1点P(3,4)在O内,OPr,即r1故选D【点睛】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离
15、与半径的关系可以确定该点与圆的位置关系9、C【解析】由在矩形ABCD中,AEBD于E,BE:ED=1:3,易证得OAB是等边三角形,继而求得BAE的度数,由OAB是等边三角形,求出ADE的度数,又由AE=3,即可求得AB的长【详解】四边形ABCD是矩形,OB=OD,OA=OC,AC=BD,OA=OB,BE:ED=1:3,BE:OB=1:2,AEBD,AB=OA,OA=AB=OB,即OAB是等边三角形,ABD=60,AEBD,AE=3,AB=,故选C【点睛】此题考查了矩形的性质、等边三角形的判定与性质以及含30角的直角三角形的性质,结合已知条件和等边三角形的判定方法证明OAB是等边三角形是解题关
16、键10、D【解析】根据题意,得到P、Q分别同时到达D、C可判断,分段讨论PQ位置后可以判断,再由等腰三角形的分类讨论方法确定,根据两个点的相对位置判断点P在DC上时,存在BPQ与BEA相似的可能性,分类讨论计算即可【详解】解:由图象可知,点Q到达C时,点P到E则BE=BC=10,ED=4故正确则AE=104=6t=10时,BPQ的面积等于 AB=DC=8故 故错误当14t22时, 故正确;分别以A、B为圆心,AB为半径画圆,将两圆交点连接即为AB垂直平分线则A、B及AB垂直平分线与点P运行路径的交点是P,满足ABP是等腰三角形此时,满足条件的点有4个,故错误BEA为直角三角形只有点P在DC边上
17、时,有BPQ与BEA相似由已知,PQ=22t当或时,BPQ与BEA相似分别将数值代入或,解得t=(舍去)或t=14.1故正确故选:D【点睛】本题是动点问题的函数图象探究题,考查了三角形相似判定、等腰三角形判定,应用了分类讨论和数形结合的数学思想二、填空题(本大题共6个小题,每小题3分,共18分)11、 【解析】设CD=AB=a,利用勾股定理可得到RtCDE中,DE2=CE2-CD2=1-2a2,RtDEP中,DE2=PD2-PE2=1-2PE,进而得出PE=a2,再根据DEPDAB,即可得到,即,可得,即可得到AB的长等于【详解】如图,设CD=AB=a,则BC2=BD2-CD2=1-a2,由折
18、叠可得,CE=BC,BP=EP,CE2=1-a2,RtCDE中,DE2=CE2-CD2=1-2a2,PEAB,A=90,PED=90,RtDEP中,DE2=PD2-PE2=(1-PE)2-PE2=1-2PE,PE=a2,PEAB,DEPDAB,即,即a2+a-1=0,解得(舍去),AB的长等于AB=.故答案为.12、-3【解析】-1-2=-1+(-2)=-(1+2)=-3,故答案为-3.13、y(3xy)2【解析】先提公因式-y,然后再利用完全平方公式进行分解即可得.【详解】6xy29x2yy3 =-y(9x2-6xy+y2)=-y(3x-y)2,故答案为:-y(3x-y)2.【点睛】本题考查
19、了利用提公因式法与公式法分解因式,熟练掌握因式分解的方法及步骤是解题的关键.因式分解的一般步骤:一提(公因式),二套(套用公式),注意一定要分解到不能再分解为止.14、x1【解析】根据一次函数的性质得出不等式解答即可【详解】因为一次函数y=2(x+1)+4的值是正数,可得:2(x+1)+40,解得:x1,故答案为x1.【点睛】本题考查了一次函数与一元一次不等式,根据题意正确列出不等式是解题的关键.15、x2且x1【解析】解:根据题意得:且x10,解得:且 故答案为且16、4(m+2n)(m2n)【解析】原式提取4后,利用平方差公式分解即可【详解】解:原式=4( )故答案为【点睛】本题考查提公因
20、式法与公式法的综合运用,解题的关键是熟练掌握因式分解的方法三、解答题(共8题,共72分)17、(1)25件;(2)见解析;(3)B班的获奖率高;(4).【解析】试题分析:(1)直接利用扇形统计图中百分数,进而求出B班参赛作品数量;(2)利用C班提供的参赛作品的获奖率为50%,结合C班参赛数量得出获奖数量;(3)分别求出各班的获奖百分率,进而求出答案;(4)利用树状统计图得出所有符合题意的答案进而求出其概率试题解析:(1)由题意可得:100(135%20%20%)=25(件),答:B班参赛作品有25件;(2)C班提供的参赛作品的获奖率为50%,C班的参赛作品的获奖数量为:10020%50%=10
21、(件),如图所示:;(3)A班的获奖率为:100%=40%,B班的获奖率为:100%=44%,C班的获奖率为:=50%;D班的获奖率为:100%=40%,故C班的获奖率高;(4)如图所示:,故一共有12种情况,符合题意的有2种情况,则从中一次随机抽出两张卡片,求抽到A、B两班的概率为:=考点:1列表法与树状图法;2扇形统计图;3条形统计图18、(1)y=x1+x;(1)y1y1=;(3)AAB为等边三角形,理由见解析;平面内存在点P,使得以点A、B、A、P为顶点的四边形是菱形,点P的坐标为(1,)、( )和(,1)【解析】(1)根据点的坐标,利用待定系数法即可求出抛物线F的解析式;(1)将直线
22、l的解析式代入抛物线F的解析式中,可求出x1、x1的值,利用一次函数图象上点的坐标特征可求出y1、y1的值,做差后即可得出y1-y1的值;(3)根据m的值可得出点A、B的坐标,利用对称性求出点A的坐标利用两点间的距离公式(勾股定理)可求出AB、AA、AB的值,由三者相等即可得出AAB为等边三角形;根据等边三角形的性质结合菱形的性质,可得出存在符合题意得点P,设点P的坐标为(x,y),分三种情况考虑:(i)当AB为对角线时,根据菱形的性质(对角线互相平分)可求出点P的坐标;(ii)当AB为对角线时,根据菱形的性质(对角线互相平分)可求出点P的坐标;(iii)当AA为对角线时,根据菱形的性质(对角
23、线互相平分)可求出点P的坐标综上即可得出结论【详解】(1)抛物线y=x1+bx+c的图象经过点(0,0)和(,0),解得:,抛物线F的解析式为y=x1+x(1)将y=x+m代入y=x1+x,得:x1=m,解得:x1=,x1=,y1=+m,y1=+m,y1y1=(+m)(+m)=(m0)(3)m=,点A的坐标为(,),点B的坐标为(,1)点A是点A关于原点O的对称点,点A的坐标为(,)AAB为等边三角形,理由如下:A(,),B(,1),A(,),AA=,AB=,AB=,AA=AB=AB,AAB为等边三角形AAB为等边三角形,存在符合题意的点P,且以点A、B、A、P为顶点的菱形分三种情况,设点P的
24、坐标为(x,y)(i)当AB为对角线时,有,解得,点P的坐标为(1,);(ii)当AB为对角线时,有,解得:,点P的坐标为(,);(iii)当AA为对角线时,有,解得:,点P的坐标为(,1)综上所述:平面内存在点P,使得以点A、B、A、P为顶点的四边形是菱形,点P的坐标为(1,)、( )和(,1)【点睛】本题考查了待定系数法求二次函数解析式、一次函数图象上点的坐标特征、等边三角形的判定与性质以及菱形的判定与性质,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(1)将一次函数解析式代入二次函数解析式中求出x1、x1的值;(3)利用勾股定理(两点间的距离公式)求出AB、AA、
25、AB的值;分AB为对角线、AB为对角线及AA为对角线三种情况求出点P的坐标19、(1);(2)【解析】(1)根据题意,画树状图列出三人随机选择上午或下午去游玩的所有等可能结果,找到小明和小刚都在本周日上午去游玩的结果,根据概率公式计算可得;(2)由(1)中树状图,找到三人在同一个半天去游玩的结果,根据概率公式计算可得【详解】解:(1)根据题意,画树状图如图:由树状图可知,三人随机选择本周日的上午或下午去游玩共有8种等可能结果,其中小明和小刚都在本周日上午去游玩的结果有(上,上,上)、(上,上,下)2种,小明和小刚都在本周日上午去游玩的概率为=;(2)由(1)中树状图可知,他们三人在同一个半天去
26、游玩的结果有(上,上,上)、(下,下,下)这2种,他们三人在同一个半天去游玩的概率为=答:他们三人在同一个半天去游玩的概率是【点睛】本题考查的是用列表法或树状图法求概率注意列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件20、(1)小王每生产一件甲种产品和每生产一件乙种产品分别需要15分钟、20分钟;(2)600-; a1【解析】(1)设生产一件甲种产品和每生产一件乙种产品分别需要x分钟、y分钟,根据图示可得:生产10件甲产品,10件乙产品用时350分钟,生产30件甲产品,20件乙产品,用时850分钟,列方程组求解;(2)根据生产一件甲种产
27、品和每生产一件乙种产品分别需要的时间关系即可表示出结果;根据“小王四月份的工资不少于1500元”即可列出不等式.【详解】(1)设生产一件甲种产品需x分钟,生产一件乙种产品需y分钟,由题意得:,解这个方程组得:,答:小王每生产一件甲种产品和每生产一件乙种产品分别需要15分钟、20分钟;(2)生产一件甲种产品需15分钟,生产一件乙种产品需20分钟,一小时生产甲产品4件,生产乙产品3件,所以小王四月份生产乙种产品的件数:3(258)=600-;依题意:1.5a+2.8(600-)1500,16800.6a1500,解得:a1.【点睛】本题考查了二元一次方程组的应用、一元一次不等式的应用,正确理解题意
28、,找准题中的等量关系列出方程组、不等关系列出不等式是解题的关键.21、 (1) GF=GD,GFGD;(2)见解析;(3)见解析;(4) 90.【解析】(1)根据四边形ABCD是正方形可得ABD=ADB=45,BAD=90,点D关于直线AE的对称点为点F,即可证明出DBF=90,故GFGD,再根据F=ADB,即可证明GF=GD;(2)连接AF,证明AFG=ADG,再根据四边形ABCD是正方形,得出AB=AD,BAD=90,设BAF=n,FAD=90+n,可得出FGD=360FADAFGADG=360(90+n)(180n)=90,故GFGD;(3)连接BD,由(2)知,FG=DG,FGDG,再
29、分别求出GFD与DBC的角度,再根据三角函数的性质可证明出BDFCDG,故DGC=FDG,则CGDF;(4)连接AF,BD,根据题意可证得DAM=902=901,DAF=2DAM=18021,再根据菱形的性质可得ADB=ABD=,故AFB+DBF+ADB+DAF=(DFG+1)+(DFG+1+)+(18021)=360,2DFG+21+21=180,即可求出DFG【详解】解:(1)GF=GD,GFGD,理由:四边形ABCD是正方形,ABD=ADB=45,BAD=90,点D关于直线AE的对称点为点F,BAD=BAF=90,F=ADB=45,ABF=ABD=45,DBF=90,GFGD,BAD=B
30、AF=90,点F,A,D在同一条线上,F=ADB,GF=GD,故答案为GF=GD,GFGD;(2)连接AF,点D关于直线AE的对称点为点F,直线AE是线段DF的垂直平分线,AF=AD,GF=GD,1=2,3=FDG,1+3=2+FDG,AFG=ADG,四边形ABCD是正方形,AB=AD,BAD=90,设BAF=n,FAD=90+n,AF=AD=AB,FAD=ABF,AFB+ABF=180n,AFB+ADG=180n,FGD=360FADAFGADG=360(90+n)(180n)=90,GFDG,(3)如图2,连接BD,由(2)知,FG=DG,FGDG,GFD=GDF=(180FGD)=45,
31、四边形ABCD是正方形,BC=CD,BCD=90,BDC=DBC=(180BCD)=45,FDG=BDC,FDGBDG=BDCBDG,FDB=GDC,在RtBDC中,sinDFG=sin45=,在RtBDC中,sinDBC=sin45=,BDFCDG,FDB=GDC,DGC=DFG=45,DGC=FDG,CGDF;(4)90,理由:如图3,连接AF,BD,点D与点F关于AE对称,AE是线段DF的垂直平分线,AD=AF,1=2,AMD=90,DAM=FAM,DAM=902=901,DAF=2DAM=18021,四边形ABCD是菱形,AB=AD,AFB=ABF=DFG+1,BD是菱形的对角线,AD
32、B=ABD=,在四边形ADBF中,AFB+DBF+ADB+DAF=(DFG+1)+(DFG+1+)+(18021)=3602DFG+21+21=180,DFG=90【点睛】本题考查了正方形、菱形、相似三角形的性质,解题的根据是熟练的掌握正方形、菱形、相似三角形的性质.22、(1)300,10; (2)有800人;(3) 【解析】试题分析:试题解析:(1)12040%=300,a%=140%30%20%=10%,a=10,10%300=30,图形如下:(2)200040%=800(人),答:估计该校选择“跑步”这种活动的学生约有800人;(3)画树状图为:共有12种等可能的结果数,其中每班所抽到
33、的两项方式恰好是“跑步”和“跳绳”的结果数为2,所以每班所抽到的两项方式恰好是“跑步”和“跳绳”的概率=考点:1.用样本估计总体;2.扇形统计图;3.条形统计图;4.列表法与树状图法.23、(1)50,108,补图见解析;(2)9.6;(3)【解析】(1)根据A景点的人数以及百分表进行计算即可得到该市周边景点共接待游客数;先求得A景点所对应的圆心角的度数,再根据扇形圆心角的度数=部分占总体的百分比360进行计算即可;根据B景点接待游客数补全条形统计图;(2)根据E景点接待游客数所占的百分比,即可估计2018年“五一”节选择去E景点旅游的人数;(3)根据甲、乙两个旅行团在A、B、D三个景点中各选
34、择一个景点,画出树状图,根据概率公式进行计算,即可得到同时选择去同一景点的概率【详解】解:(1)该市周边景点共接待游客数为:1530%=50(万人),A景点所对应的圆心角的度数是:30%360=108,B景点接待游客数为:5024%=12(万人),补全条形统计图如下:(2)E景点接待游客数所占的百分比为:100%=12%,2018年“五一”节选择去E景点旅游的人数约为:8012%=9.6(万人);(3)画树状图可得:共有9种可能出现的结果,这些结果出现的可能性相等,其中同时选择去同一个景点的结果有3种,同时选择去同一个景点的概率=【点睛】本题考查列表法与树状图法;用样本估计总体;扇形统计图;条形统计图24、规定日期是6天【解析】本题的等量关系为:甲工作2天完成的工作量+乙规定日期完成的工作量=1,把相应数值代入即可求解【详解】解:设工作总量为1,规定日期为x天,则若单独做,甲队需x天,乙队需x+3天,根据题意列方程得 解方程可得x=6,经检验x=6是分式方程的解答:规定日期是6天