《天津市大港油田重点达标名校2023年中考数学押题卷含解析.doc》由会员分享,可在线阅读,更多相关《天津市大港油田重点达标名校2023年中考数学押题卷含解析.doc(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(共10小题,每小题3分,共30分)1如图,点M是正方形ABCD边CD上一点,连接MM,作DEAM于点E,BFAM于点F,连接BE,若AF1,四边形ABED的面积为6,则EBF的余弦值是()ABCD2有一个数用科学记数法表示为5.2105,则这个数是()A520000BC52000D52000003下列运算正确的是()A5a+2b=5(a+b
2、)Ba+a2=a3C2a33a2=6a5D(a3)2=a54若,代数式的值是A0BC2D5如图,ABBD,CDBD,垂足分别为B、D,AC和BD相交于点E,EFBD垂足为F则下列结论错误的是()ABCD6下列图形中,不是轴对称图形的是()ABCD7已知,且,则的值为( )A2或12B2或C或12D或8如图:A、B、C、D四点在一条直线上,若ABCD,下列各式表示线段AC错误的是( )AACADCDBACAB+BCCACBDABDACADAB9如图,直线ab,一块含60角的直角三角板ABC(A60)按如图所示放置若155,则2的度数为()A105B110C115D12010如图所示,ABC为等腰
3、直角三角形,ACB=90,AC=BC=2,正方形DEFG边长也为2,且AC与DE在同一直线上,ABC从C点与D点重合开始,沿直线DE向右平移,直到点A与点E重合为止,设CD的长为x,ABC与正方形DEFG重合部分(图中阴影部分)的面积为y,则y与x之间的函数关系的图象大致是()ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11抛物线(为非零实数)的顶点坐标为_.12如图,已知ABC中,ABAC5,BC8,将ABC沿射线BC方向平移m个单位得到DEF,顶点A,B,C分别与D,E,F对应,若以A,D,E为顶点的三角形是等腰三角形,且AE为腰,则m的值是_13如图,已知点C为反比例函数
4、上的一点,过点C向坐标轴引垂线,垂足分别为A、B,那么四边形AOBC的面积为_14抛物线y=x2+2x+m1与x轴有交点,则m的取值范围是_152011年,我国汽车销量超过了18500000辆,这个数据用科学记数法表示为 辆16如图,正方形ABCD的边长为4,点M在边DC上,M、N 两点关于对角线AC对称,若DM=1,则tanADN= 三、解答题(共8题,共72分)17(8分)解不等式组并写出它的所有整数解18(8分)画出二次函数y(x1)2的图象19(8分)解方程:1+20(8分)为了解中学生“平均每天体育锻炼时间”的情况,某地区教育部门随机调查了若干名中学生,根据调查结果制作统计图和图,请
5、根据相关信息,解答下列问题:(1)本次接受随机抽样调查的中学生人数为_,图中m的值是_;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)根据统计数据,估计该地区250000名中学生中,每天在校体育锻炼时间大于等于1.5h的人数21(8分)化简(),并说明原代数式的值能否等于-122(10分)为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”比赛项目为:A唐诗;B宋词;C论语;D三字经比赛形式分“单人组”和“双人组”(1)小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?(2)小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名
6、队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明23(12分)如图,RtABC中,ABC90,点D,F分别是AC,AB的中点,CEDB,BEDC(1)求证:四边形DBEC是菱形;(2)若AD3, DF1,求四边形DBEC面积24现有两个纸箱,每个纸箱内各装有4个材质、大小都相同的乒乓球,其中一个纸箱内4个小球上分别写有1、2、3、4这4个数,另一个纸箱内4个小球上分别写有5、6、7、8这4个数,甲、乙两人商定了一个游戏,规则是:从这两个纸箱中各随机摸出一个小球,然后把两个小球上的数字相乘,若得到的积是2的倍数
7、,则甲得1分,若得到积是3的倍数,则乙得2分.完成一次游戏后,将球分别放回各自的纸箱,摇匀后进行下一次游戏,最后得分高者胜出.。(1)请你通过列表(或树状图)分别计算乘积是2的倍数和3的倍数的概率;(2)你认为这个游戏公平吗?为什么?若你认为不公平,请你修改得分规则,使游戏对双方公平.参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】首先证明ABFDEA得到BF=AE;设AE=x,则BF=x,DE=AF=1,利用四边形ABED的面积等于ABE的面积与ADE的面积之和得到xx+x1=6,解方程求出x得到AE=BF=3,则EF=x-1=2,然后利用勾股定理计算出BE,最后利用余弦
8、的定义求解【详解】四边形ABCD为正方形,BAAD,BAD90,DEAM于点E,BFAM于点F,AFB90,DEA90,ABF+BAF90,EAD+BAF90,ABFEAD,在ABF和DEA中 ABFDEA(AAS),BFAE;设AEx,则BFx,DEAF1,四边形ABED的面积为6,解得x13,x24(舍去),EFx12,在RtBEF中,故选B【点睛】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形具有四边形、平行四边形、矩形、菱形的一切性质会运用全等三角形的知识解决线段相等的问题也考查了解直角三角形2、A【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n
9、为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值10时,n是正数;当原数的绝对值1时,n是负数【详解】5.2105=520000, 故选A【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值3、C【解析】直接利用合并同类项法则以及单项式乘以单项式、幂的乘方运算法则分别化简得出答案【详解】A、5a+2b,无法计算,故此选项错误;B、a+a2,无法计算,故此选项错误;C、2a33a2=6a5,故此选项正确;D、(a3)2=a6,故此选项错误故选C【点睛】此题
10、主要考查了合并同类项以及单项式乘以单项式、幂的乘方运算,正确掌握运算法则是解题关键4、D【解析】由可得,整体代入到原式即可得出答案【详解】解:,则原式故选:D【点睛】本题主要考查整式的化简求值,熟练掌握整式的混合运算顺序和法则及代数式的求值是解题的关键5、A【解析】利用平行线的性质以及相似三角形的性质一一判断即可【详解】解:ABBD,CDBD,EFBD,ABCDEFABEDCE,故选项B正确,EFAB,故选项C,D正确,故选:A【点睛】考查平行线的性质,相似三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型6、A【解析】观察四个选项图形,根据轴对称
11、图形的概念即可得出结论【详解】根据轴对称图形的概念,可知:选项A中的图形不是轴对称图形故选A【点睛】此题主要考查了轴对称图形,轴对称图形的关键是寻找对称轴,对称轴可使图形两部分折叠后重合7、D【解析】根据=5,=7,得,因为,则,则=5-7=-2或-5-7=-12.故选D.8、C【解析】根据线段上的等量关系逐一判断即可.【详解】A、AD-CD=AC,此选项表示正确;B、AB+BC=AC,此选项表示正确;C、AB=CD,BD-AB=BD-CD,此选项表示不正确;D、AB=CD,AD-AB=AD-CD=AC,此选项表示正确.故答案选:C.【点睛】本题考查了线段上两点间的距离及线段的和、差的知识,解
12、题的关键是找出各线段间的关系.9、C【解析】如图,首先证明AMO=2,然后运用对顶角的性质求出ANM=55;借助三角形外角的性质求出AMO即可解决问题【详解】如图,对图形进行点标注.直线ab,AMO=2;ANM=1,而1=55,ANM=55,2=AMO=A+ANM=60+55=115,故选C.【点睛】本题考查了平行线的性质,三角形外角的性质,熟练掌握和灵活运用相关知识是解题的关键.10、A【解析】此题可分为两段求解,即C从D点运动到E点和A从D点运动到E点,列出面积随动点变化的函数关系式即可【详解】解:设CD的长为与正方形DEFG重合部分图中阴影部分的面积为当C从D点运动到E点时,即时,当A从
13、D点运动到E点时,即时,与x之间的函数关系由函数关系式可看出A中的函数图象与所求的分段函数对应故选A【点睛】本题考查的动点变化过程中面积的变化关系,重点是列出函数关系式,但需注意自变量的取值范围二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】【分析】将抛物线的解析式由一般式化为顶点式,即可得到顶点坐标.【详解】y=mx2+2mx+1=m(x2+2x)+1=m(x2+2x+1-1)+1=m(x+1)2 +1-m,所以抛物线的顶点坐标为(-1,1-m),故答案为(-1,1-m).【点睛】本题考查了抛物线的顶点坐标,把抛物线的解析式转化为顶点式是解题的关键.12、或5或1【解析】根
14、据以点A,D,E为顶点的三角形是等腰三角形分类讨论即可【详解】解:如图(1)当在ADE中,DE=5,当AD=DE=5时为等腰三角形,此时m=5.(2)又AC=5,当平移m个单位使得E、C点重合,此时AE=ED=5,平移的长度m=BC=1,(3)可以AE、AD为腰使ADE为等腰三角形,设平移了m个单位:则AN=3,AC=,AD=m,得:,得m=,综上所述:m为或5或1,所以答案:或5或1【点睛】本题主要考查等腰三角形的性质,注意分类讨论的完整性.13、1【解析】解:由于点C为反比例函数上的一点,则四边形AOBC的面积S=|k|=1故答案为:1.14、m1【解析】由抛物线与x轴有交点可得出方程x1
15、+1x+m-1=0有解,利用根的判别式0,即可得出关于m的一元一次不等式,解之即可得出结论【详解】关于x的一元二次方程x1+1x+m1=0有解,=114(m1)=84m0,解得:m1.故答案为:m1.【点睛】本题考查的知识点是抛物线与坐标轴的交点,解题的关键是熟练的掌握抛物线与坐标轴的交点.15、2.852【解析】根据科学记数法的定义,科学记数法的表示形式为a20n,其中2|a|20,n为整数,表示时关键要正确确定a的值以及n的值在确定n的值时,看该数是大于或等于2还是小于2当该数大于或等于2时,n为它的整数位数减2;当该数小于2时,n为它第一个有效数字前0的个数(含小数点前的2个0)【详解】
16、解:28500000一共8位,从而28500000=2.85216、【解析】M、N两点关于对角线AC对称,所以CM=CN,进而求出CN的长度再利用ADN=DNC即可求得tanADN【详解】解:在正方形ABCD中,BC=CD=1DM=1,CM=2,M、N两点关于对角线AC对称,CN=CM=2ADBC,ADN=DNC,故答案为【点睛】本题综合考查了正方形的性质,轴对称的性质以及锐角三角函数的定义三、解答题(共8题,共72分)17、不等式组的整数解有1、0、1【解析】先解不等式组,求得不等式组的解集,再确定不等式组的整数解即可.【详解】,解不等式可得,x-2;解不等式可得,x1;不等式组的解集为:2
17、x1,不等式组的整数解有1、0、1【点睛】本题考查了解一元一次不等式组,正确求出每一个不等式解集是基础, 熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则求不等式组的解集是解答本题的关键18、见解析【解析】首先可得顶点坐标为(1,0),然后利用对称性列表,再描点,连线,即可作出该函数的图象【详解】列表得:x10123y41014如图:【点睛】此题考查了二次函数的图象注意确定此二次函数的顶点坐标是关键19、无解【解析】两边都乘以x(x-3),去分母,化为整式方程求解即可.【详解】解:去分母得:x23xx23x18,解得:x3,经检验x3是增根,分式方程无解【点睛】题考查了分式方程
18、的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x的值后不要忘记检验.20、(1)250、12;(2)平均数:1.38h;众数:1.5h;中位数:1.5h;(3)160000人;【解析】(1) 根据题意, 本次接受调查的学生总人数为各个金额人数之和, 用总概率减去其他金额的概率即可求得m值(2) 平均数为一组数据中所有数据之和再除以这组数据的个数; 众数是在一组数据中出现次数最多的数; 中位数是将一组数据按大小顺序排列, 处于最中间位置的一个数据, 或是最中间两个数据的平均数, 据此求解即可(3) 根据样本估计总体, 用“每天在校体育锻炼时间大于等于1.5h的人
19、数” 的概率乘以全校总人数求解即可【详解】(1)本次接受随机抽样调查的中学生人数为6024%=250人,m=100(24+48+8+8)=12,故答案为250、12;(2)平均数为=1.38(h),众数为1.5h,中位数为=1.5h;(3)估计每天在校体育锻炼时间大于等于1.5h的人数约为250000=160000人【点睛】本题主要考查数据的收集、 处理以及统计图表.21、见解析【解析】先根据分式的混合运算顺序和运算法则化简原式,若原代数式的值为1,则=1,截至求得x的值,再根据分式有意义的条件即可作出判断【详解】原式=,若原代数式的值为1,则=1,解得:x=0,因为x=0时,原式没有意义,所
20、以原代数式的值不能等于1【点睛】本题考查了分式的化简求值,熟练掌握运算法则是解题的关键22、 (1) ;(2).【解析】(1)直接利用概率公式求解;(2)先画树状图展示所有12种等可能的结果数,再找出恰好小红抽中“唐诗”且小明抽中“宋词”的结果数,然后根据概率公式求解【详解】(1)她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率=;(2)画树状图为:共有12种等可能的结果数,其中恰好小红抽中“唐诗”且小明抽中“宋词”的结果数为1,所以恰好小红抽中“唐诗”且小明抽中“宋词”的概率=23、 (1)见解析;(1)4 【解析】(1)根据平行四边形的判定定理首先推知四边形DBEC为平行四边形,然后由
21、直角三角形斜边上的中线等于斜边的一半得到其邻边相等:CD=BD,得证;(1)由三角形中位线定理和勾股定理求得AB边的长度,然后根据菱形的性质和三角形的面积公式进行解答【详解】(1)证明:CEDB,BEDC,四边形DBEC为平行四边形又RtABC中,ABC=90,点D是AC的中点,CD=BD=AC,平行四边形DBEC是菱形;(1)点D,F分别是AC,AB的中点,AD=3,DF=1,DF是ABC的中位线,AC=1AD=6,SBCD=SABCBC=1DF=1又ABC=90,AB= = = 4平行四边形DBEC是菱形,S四边形DBEC=1SBCD=SABC=ABBC=41=4点睛:本题考查了菱形的判定
22、与性质,直角三角形斜边上的中线等于斜边的一半,三角形中位线定理.由点D是AC的中点,得到CD=BD是解答(1)的关键,由菱形的性质和三角形的面积公式得到S四边形DBEC=SABC是解(1)的关键.24、(1)(2)游戏不公平,修改得分规则为:把两个小球上的数字相乘,若得到的积是2的倍数,则甲得7分,若得到的积是3的倍数,则乙得12分【解析】试题分析:(1)列表如下:共有16种情况,且每种情况出现的可能性相同,其中,乘积是2的倍数的有12种,乘积是3的倍数的有7种.(两数乘积是2的倍数)(两数乘积是3的倍数)(2)游戏不公平,修改得分规则为:把两个小球上的数字相乘,若得到的积是2的倍数,则甲得7分,若得到的积是3的倍数,则乙得12分考点:概率的计算点评:题目难度不大,考查基本概率的计算,属于基础题。本题主要是第二问有点难度,对游戏规则的确定,需要一概率为基础。