《山东省泰安市泰安实验中学2023年高三二诊模拟考试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《山东省泰安市泰安实验中学2023年高三二诊模拟考试数学试卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设F为双曲线C:(a0,b0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P、Q两点若|PQ|=|OF|,则C的离心率为ABC2D2若,则, , , 的大小关系为( )ABCD3函数满足对任意都有成立,且函数的图象关于点对称
2、,则的值为( )A0B2C4D14设为虚数单位,复数,则实数的值是( )A1B-1C0D25,则与位置关系是 ()A平行B异面C相交D平行或异面或相交6执行如图所示的程序框图,则输出的结果为( )ABCD7设是定义在实数集上的函数,满足条件是偶函数,且当时,则,的大小关系是( )ABCD8设复数满足,则( )ABCD9若复数满足,则的虚部为( )A5BCD-510点为棱长是2的正方体的内切球球面上的动点,点为的中点,若满足,则动点的轨迹的长度为( )ABCD11如图是一个几何体的三视图,则该几何体的体积为()ABCD12的展开式中,项的系数为( )A23B17C20D63二、填空题:本题共4小
3、题,每小题5分,共20分。13展开式中项的系数是_14在某批次的某种灯泡中,随机抽取200个样品.并对其寿命进行追踪调查,将结果列成频率分布表如下:寿命(天)频数频率40600.30.4200.1合计2001某人从灯泡样品中随机地购买了个,如果这个灯泡的寿命情况恰好与按四个组分层抽样所得的结果相同,则的最小值为_.15设,分别是椭圆C:()的左、右焦点,直线l过交椭圆C于A,B两点,交y轴于E点,若满足,且,则椭圆C的离心率为_.16(5分)如图是一个算法的流程图,若输出的值是,则输入的值为_ 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)某公司为了鼓励运动提高所
4、有用户的身体素质,特推出一款运动计步数的软件,所有用户都可以通过每天累计的步数瓜分红包,大大增加了用户走步的积极性,所以该软件深受广大用户的欢迎.该公司为了研究“日平均走步数和性别是否有关”,统计了2019年1月份所有用户的日平均步数,规定日平均步数不少于8000的为“运动达人”,步数在8000以下的为“非运动达人”,采用按性别分层抽样的方式抽取了100个用户,得到如下列联表:运动达人非运动达人总计男3560女26总计100(1)(i)将列联表补充完整;(ii)据此列联表判断,能否有的把握认为“日平均走步数和性别是否有关”?(2)将频率视作概率,从该公司的所有人“运动达人”中任意抽取3个用户,
5、求抽取的用户中女用户人数的分布列及期望.附:18(12分)的内角,的对边分别为,其面积记为,满足.(1)求;(2)若,求的值.19(12分)如图,四棱锥中,底面是菱形,对角线交于点为棱的中点,求证:(1)平面;(2)平面平面20(12分)设函数.(1)若恒成立,求整数的最大值;(2)求证:.21(12分)已知分别是椭圆的左焦点和右焦点,椭圆的离心率为是椭圆上两点,点满足.(1)求的方程;(2)若点在圆上,点为坐标原点,求的取值范围.22(10分)某学校为了解全校学生的体重情况,从全校学生中随机抽取了100 人的体重数据,得到如下频率分布直方图,以样本的频率作为总体的概率.(1)估计这100人体
6、重数据的平均值和样本方差;(结果取整数,同一组中的数据用该组区间的中点值作代表)(2)从全校学生中随机抽取3名学生,记为体重在的人数,求的分布列和数学期望;(3)由频率分布直方图可以认为,该校学生的体重近似服从正态分布.若,则认为该校学生的体重是正常的.试判断该校学生的体重是否正常?并说明理由.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】准确画图,由图形对称性得出P点坐标,代入圆的方程得到c与a关系,可求双曲线的离心率【详解】设与轴交于点,由对称性可知轴,又,为以为直径的圆的半径,为圆心,又点在圆上,即,故选A【点
7、睛】本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾,运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来2、D【解析】因为,所以,因为,所以,.综上;故选D.3、C【解析】根据函数的图象关于点对称可得为奇函数,结合可得是周期为4的周期函数,利用及可得所求的值.【详解】因为函数的图象关于点对称,所以的图象关于原点对称,所以为上的奇函数.由可得,故,故是周期为4的周期函数.因为,所以.因为,故,所以.故选:C.【点睛】本题考查函数的奇偶性和周期性,一般地,如果上的函数满足,那么是周期为
8、的周期函数,本题属于中档题.4、A【解析】根据复数的乘法运算化简,由复数的意义即可求得的值.【详解】复数,由复数乘法运算化简可得,所以由复数定义可知,解得,故选:A.【点睛】本题考查了复数的乘法运算,复数的意义,属于基础题.5、D【解析】结合图(1),(2),(3)所示的情况,可得a与b的关系分别是平行、异面或相交选D6、D【解析】循环依次为 直至结束循环,输出,选D.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.7
9、、C【解析】y=f(x+1)是偶函数,f(-x+1)=f(x+1),即函数f(x)关于x=1对称当x1时,为减函数,f(log32)=f(2-log32)= f()且=log34,log343,bac,故选C8、D【解析】根据复数运算,即可容易求得结果.【详解】.故选:D.【点睛】本题考查复数的四则运算,属基础题.9、C【解析】把已知等式变形,再由复数代数形式的乘除运算化简得答案【详解】由(1+i)z|3+4i|,得z,z的虚部为故选C【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题10、C【解析】设的中点为,利用正方形和正方体的性质,结合线面垂直的判定定理可以证明出平面,
10、这样可以确定动点的轨迹,最后求出动点的轨迹的长度.【详解】设的中点为,连接,因此有,而,而平面,因此有平面,所以动点的轨迹平面与正方体的内切球的交线. 正方体的棱长为2,所以内切球的半径为,建立如下图所示的以为坐标原点的空间直角坐标系:因此有,设平面的法向量为,所以有,因此到平面的距离为:,所以截面圆的半径为:,因此动点的轨迹的长度为.故选:C【点睛】本题考查了线面垂直的判定定理的应用,考查了立体几何中轨迹问题,考查了球截面的性质,考查了空间想象能力和数学运算能力.11、A【解析】根据三视图可得几何体为直三棱柱,根据三视图中的数据直接利用公式可求体积.【详解】由三视图可知几何体为直三棱柱,直观
11、图如图所示:其中,底面为直角三角形,高为.该几何体的体积为故选:A.【点睛】本题考查三视图及棱柱的体积,属于基础题.12、B【解析】根据二项式展开式的通项公式,结合乘法分配律,求得的系数.【详解】的展开式的通项公式为.则出,则出,该项为:;出,则出,该项为:;出,则出,该项为:;综上所述:合并后的项的系数为17.故选:B【点睛】本小题考查二项式定理及展开式系数的求解方法等基础知识,考查理解能力,计算能力,分类讨论和应用意识.二、填空题:本题共4小题,每小题5分,共20分。13、-20【解析】根据二项式定理的通项公式,再分情况考虑即可求解【详解】解:展开式中项的系数:二项式由通项公式当时,项的系
12、数是,当时,项的系数是,故的系数为;故答案为:【点睛】本题主要考查二项式定理的应用,注意分情况考虑,属于基础题14、10【解析】先求出a,b,根据分层抽样的比例引入正整数k表示n,从而得出的最小值.【详解】由题意得,a=0.2,b=80,由表可知,灯泡样品第一组有40个,第二组有60个,第三组有80个,第四组有20个,所以四个组的比例为2:3:4:1,所以按分层抽样法,购买的灯泡数为n=2k+3k+4k+k =10k(),所以的最小值为10.【点睛】本题考查分层抽样基本原理的应用,涉及抽样比、总体数量、每层样本数量的计算,属于基础题.15、【解析】采用数形结合,计算以及,然后根据椭圆的定义可得
13、,并使用余弦定理以及,可得结果.【详解】如图由,所以由,所以又,则所以所以化简可得:则故答案为:【点睛】本题考查椭圆的定义以及余弦定理的使用,关键在于根据角度求出线段的长度,考查分析能力以及计算能力,属中档题.16、或【解析】依题意,当时,由,即,解得;当时,由,解得或(舍去)综上,得或三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(i)填表见解析(ii)没有的把握认为“日平均走步数和性别是否有关”(2)详见解析【解析】(1)(i)由已给数据可完成列联表,(ii)计算出后可得;(2)由列联表知从运动达人中抽取1个用户为女用户的概率为,的取值为,由二项分布概率公式计算
14、出各概率得分布列,由期望公式计算期望【详解】解(1)(i)运动达人非运动达人总计男352560女142640总计4951100(ii)由列联表得所以没有的把握认为“日平均走步数和性别是否有关”(2)由列联表知从运动达人中抽取1个用户为女用户的概率为,.易知所以的分布列为0123【点睛】本题考查列联表,考查独立性检验,考查随机变量的概率分布列和期望属于中档题本题难点在于认识到18、(1);(2)【解析】(1)根据三角形面积公式及平面向量数量积定义代入公式,即可求得,进而求得的值;(2)根据正弦定理将边化为角,结合(1)中的值,即可将表达式化为的三角函数式;结合正弦和角公式与辅助角公式化简,即可求
15、得和,进而由正弦定理确定,代入整式即可求解.【详解】(1)因为,所以由三角形面积公式及平面向量数量积运算可得,所以.因为,所以.(2)因为,所以由正弦定理代入化简可得,由(1),代入可得,展开化简可得,根据辅助角公式化简可得.因为,所以,所以,所以为等腰三角形,且,所以.【点睛】本题考查了正弦定理在解三角形中的应用,三角形面积公式的应用,平面向量数量积的运算,正弦和角公式及辅助角公式的简单应用,属于基础题.19、(1)详见解析;(2)详见解析.【解析】(1) 连结根据中位线的性质证明即可.(2) 证明,再证明平面即可.【详解】解:证明:连结是菱形对角线的交点,为的中点,是棱的中点,平面平面平面
16、解:在菱形中,且为的中点,平面平面,平面平面【点睛】本题主要考查了线面平行与垂直的判定,属于基础题.20、(1)整数的最大值为;(2)见解析.【解析】(1)将不等式变形为,构造函数,利用导数研究函数的单调性并确定其最值,从而得到正整数的最大值;(2)根据(1)的结论得到,利用不等式的基本性质可证得结论.【详解】(1)由得,令,令,对恒成立,所以,函数在上单调递增,故存在使得,即,从而当时,有,所以,函数在上单调递增;当时,有,所以,函数在上单调递减.所以,因此,整数的最大值为;(2)由(1)知恒成立,令则,上述等式全部相加得,所以,因此,【点睛】本题考查导数在函数单调性、最值中的应用,以及放缩
17、法证明不等式的技巧,属于难题21、(1);(2).【解析】(1)根据焦点坐标和离心率,结合椭圆中的关系,即可求得的值,进而得椭圆的标准方程.(2)设出直线的方程为,由题意可知为中点.联立直线与椭圆方程,由韦达定理表示出,由判别式可得;由平面向量的线性运算及数量积定义,化简可得,代入弦长公式化简;由中点坐标公式可得点的坐标,代入圆的方程,化简可得,代入数量积公式并化简,由换元法令,代入可得,再令及,结合函数单调性即可确定的取值范围,即确定的取值范围,因而可得的取值范围.【详解】(1)分别是椭圆的左焦点和右焦点,则,椭圆的离心率为则解得,所以,所以的方程为.(2)设直线的方程为,点满足,则为中点,
18、点在圆上,设,联立直线与椭圆方程,化简可得,所以 则,化简可得,而 由弦长公式代入可得为中点,则 点在圆上,代入化简可得,所以令,则,令,则令,则,所以, 因为在内单调递增,所以,即所以【点睛】本题考查了椭圆的标准方程求法,直线与椭圆的位置关系综合应用,由韦达定理研究参数间的关系,平面向量的线性运算与数量积运算,弦长公式的应用及换元法在求取值范围问题中的综合应用,计算量大,属于难题.22、(1)60;25(2)见解析,2.1(3)可以认为该校学生的体重是正常的.见解析【解析】(1)根据频率分布直方图可求出平均值和样本方差;(2)由题意知服从二项分布,分别求出,进而可求出分布列以及数学期望;(3)由第一问可知服从正态分布,继而可求出的值,从而可判断.【详解】解:(1)(2)由已知可得从全校学生中随机抽取1人,体重在的概率为0.7. 随机拍取3人,相当于3次独立重复实验,随机交量服从二项分布,则,所以的分布列为:01230.0270.1890.4410.343数学期望(3)由题意知服从正态分布,则,所以可以认为该校学生的体重是正常的.【点睛】本题考查了由频率分布直方图求进行数据估计,考查了二项分布,考查了正态分布.注意,统计类问题,如果题目中没有特殊说明,则求出数据的精度和题目中数据的小数后位数相同.