《山东省东营市垦利区利区六校2022-2023学年中考数学押题卷含解析.doc》由会员分享,可在线阅读,更多相关《山东省东营市垦利区利区六校2022-2023学年中考数学押题卷含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1下列图形中,周长不是32 m的图形是( )ABCD2在下列交通标志中,既是轴对称图形,又是中心对称图形的是( )ABCD3二次函数y=ax1+bx+c(a0)的部分图象如图所示,图象过点(
2、1,0),对称轴为直线x=1,下列结论:(1)4a+b=0;(1)9a+c3b;(3)7a3b+1c0;(4)若点A(3,y1)、点B(,y1)、点C(7,y3)在该函数图象上,则y1y3y1;(5)若方程a(x+1)(x5)=3的两根为x1和x1,且x1x1,则x115x1其中正确的结论有()A1个B3个C4个D5个4如图,数轴上有M、N、P、Q四个点,其中点P所表示的数为a,则数-3a所对应的点可能是( )AMBNCPDQ5下表是某校合唱团成员的年龄分布.年龄/岁13141516频数515x对于不同的x,下列关于年龄的统计量不会发生改变的是( )A众数、中位数B平均数、中位数C平均数、方差
3、D中位数、方差6为了增强学生体质,学校发起评选“健步达人”活动,小明用计步器记录自己一个月(30天)每天走的步数,并绘制成如下统计表:步数(万步)1.01.21.11.41.3天数335712在每天所走的步数这组数据中,众数和中位数分别是()A1.3,1.1B1.3,1.3C1.4,1.4D1.3,1.47将抛物线y=x26x+21向左平移2个单位后,得到新抛物线的解析式为()Ay=(x8)2+5By=(x4)2+5Cy=(x8)2+3Dy=(x4)2+38下列命题中真命题是( )A若a2=b2,则a=b B4的平方根是2C两个锐角之和一定是钝角 D相等的两个角是对顶角9下面几何的主视图是(
4、)ABCD10下列图形中,不是轴对称图形的是()ABCD11已知a+b4,cd3,则(b+c)(da)的值为( )A7B7C1D112下列运算中,计算结果正确的是()Aa2a3=a6 Ba2+a3=a5 C(a2)3=a6 Da12a6=a2二、填空题:(本大题共6个小题,每小题4分,共24分)13如果抛物线y=ax2+5的顶点是它的最低点,那么a的取值范围是_14如图,在平面直角坐标系中,以坐标原点O为位似中心在y轴的左侧将OAB缩小得到OAB,若OAB与OAB的相似比为2:1,则点B(3,2)的对应点B的坐标为_15某广场要做一个由若干盆花组成的形如正六边形的花坛,每条边(包括两个顶点)有
5、n(n1)盆花,设这个花坛边上的花盆的总数为S,请观察图中的规律:按上规律推断,S与n的关系是_16一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出2个球,都是黄球的概率为 17如图,点A在双曲线上,ABx轴于B,且AOB的面积SAOB=2,则k=_18长城的总长大约为6700000m,将数6700000用科学记数法表示为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,AB为O的直径,点E在O上,C为的中点,过点C作直线CDAE于D,连接AC、BC(1)试判断直线CD与O的位置关系,并说明理由;(2)
6、若AD=2,AC=,求AB的长20(6分)路边路灯的灯柱垂直于地面,灯杆的长为2米,灯杆与灯柱成角,锥形灯罩的轴线与灯杆垂直,且灯罩轴线正好通过道路路面的中心线(在中心线上).已知点与点之间的距离为12米,求灯柱的高.(结果保留根号)21(6分)问题提出(1)如图1,正方形ABCD的对角线交于点O,CDE是边长为6的等边三角形,则O、E之间的距离为 ;问题探究(2)如图2,在边长为6的正方形ABCD中,以CD为直径作半圆O,点P为弧CD上一动点,求A、P之间的最大距离;问题解决(3)窑洞是我省陕北农村的主要建筑,窑洞宾馆更是一道靓丽的风景线,是因为窑洞除了它的坚固性及特有的外在美之外,还具有冬
7、暖夏凉的天然优点家住延安农村的一对即将参加中考的双胞胎小宝和小贝两兄弟,发现自家的窑洞(如图3所示)的门窗是由矩形ABCD及弓形AMD组成,AB=2m,BC=3.2m,弓高MN=1.2m(N为AD的中点,MNAD),小宝说,门角B到门窗弓形弧AD的最大距离是B、M之间的距离小贝说这不是最大的距离,你认为谁的说法正确?请通过计算求出门角B到门窗弓形弧AD的最大距离22(8分) “大美湿地,水韵盐城”某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问
8、题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B“的学生人数23(8分)(1)计算:22+|4|+()-1+2tan60(2) 求 不 等 式 组的 解 集 24(10分)在平面直角坐标系中,一次函数(a0)的图象与反比例函数的图象交于第二、第四象限内的A、B两点,与轴交于点C,过点A作AH轴,垂足为点H,OH=3,tanAOH=,点B的坐标为(,-2).求该反比例函数和一次函数的解析式;求AHO的周长.25(10分)益马高速通车后,将桃江马迹塘的农产品运往益阳的运输成本大大降低马迹
9、塘一农户需要将A,B两种农产品定期运往益阳某加工厂,每次运输A,B产品的件数不变,原来每运一次的运费是1200元,现在每运一次的运费比原来减少了300元,A,B两种产品原来的运费和现在的运费(单位:元件)如下表所示:品种AB原来的运费4525现在的运费3020(1)求每次运输的农产品中A,B产品各有多少件;(2)由于该农户诚实守信,产品质量好,加工厂决定提高该农户的供货量,每次运送的总件数增加8件,但总件数中B产品的件数不得超过A产品件数的2倍,问产品件数增加后,每次运费最少需要多少元26(12分)在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计
10、分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:频数分布表中a = ,b= ,并将统计图补充完整;如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人?已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少? 27(12分)如图,在RtABC中,C90,AC,tanB,半径为2的C分别交AC,BC于点D、E,得到DE弧求证:AB为C的切线求图中阴影部分的面积参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合
11、题目要求的)1、B【解析】根据所给图形,分别计算出它们的周长,然后判断各选项即可【详解】A. L=(6+10)2=32,其周长为32.B. 该平行四边形的一边长为10,另一边长大于6,故其周长大于32.C. L=(6+10)2=32,其周长为32.D. L=(6+10)2=32,其周长为32.采用排除法即可选出B故选B.【点睛】此题考查多边形的周长,解题在于掌握计算公式.2、C【解析】根据轴对称图形和中心对称图形的定义进行分析即可.【详解】A、不是轴对称图形,也不是中心对称图形故此选项错误;B、不是轴对称图形,也不是中心对称图形故此选项错误;C、是轴对称图形,也是中心对称图形故此选项正确;D、
12、是轴对称图形,但不是中心对称图形故此选项错误故选C【点睛】考点:1、中心对称图形;2、轴对称图形3、B【解析】根据题意和函数的图像,可知抛物线的对称轴为直线x=-=1,即b=-4a,变形为4a+b=0,所以(1)正确;由x=-3时,y0,可得9a+3b+c0,可得9a+c-3c,故(1)正确;因为抛物线与x轴的一个交点为(-1,0)可知a-b+c=0,而由对称轴知b=-4a,可得a+4a+c=0,即c=-5a.代入可得7a3b+1c=7a+11a-5a=14a,由函数的图像开口向下,可知a0,因此7a3b+1c0,故(3)不正确;根据图像可知当x1时,y随x增大而增大,当x1时,y随x增大而减
13、小,可知若点A(3,y1)、点B(,y1)、点C(7,y3)在该函数图象上,则y1=y3y1,故(4)不正确;根据函数的对称性可知函数与x轴的另一交点坐标为(5,0),所以若方程a(x+1)(x5)=3的两根为x1和x1,且x1x1,则x11x1,故(5)正确正确的共有3个.故选B.点睛:本题考查了二次函数图象与系数的关系:二次函数y=ax1+bx+c(a0),二次项系数a决定抛物线的开口方向和大小,当a0时,抛物线向上开口;当a0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab0),对称轴在y轴左;当a与b异号时(即ab0),对称轴在y轴右;常数项c
14、决定抛物线与y轴交点抛物线与y轴交于(0,c);抛物线与x轴交点个数由决定,=b14ac0时,抛物线与x轴有1个交点;=b14ac=0时,抛物线与x轴有1个交点;=b14ac0时,抛物线与x轴没有交点4、A【解析】解:点P所表示的数为a,点P在数轴的右边,-3a一定在原点的左边,且到原点的距离是点P到原点距离的3倍,数-3a所对应的点可能是M,故选A点睛:本题考查了数轴,解决本题的关键是判断-3a一定在原点的左边,且到原点的距离是点P到原点距离的3倍5、A【解析】由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15、16个数据的平均数,可得答案【详
15、解】由题中表格可知,年龄为15岁与年龄为16岁的频数和为,则总人数为,故该组数据的众数为14岁,中位数为(岁),所以对于不同的x,关于年龄的统计量不会发生改变的是众数和中位数,故选A.【点睛】本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键6、B【解析】在这组数据中出现次数最多的是1.1,得到这组数据的众数;把这组数据按照从小到大的顺序排列,第15、16个数的平均数是中位数【详解】在这组数据中出现次数最多的是1.1,即众数是1.1要求一组数据的中位数,把这组数据按照从小到大的顺序排列,第15、16个两个数都是1
16、.1,所以中位数是1.1故选B【点睛】本题考查一组数据的中位数和众数,在求中位数时,首先要把这列数字按照从小到大或从的大到小排列,找出中间一个数字或中间两个数字的平均数即为所求7、D【解析】直接利用配方法将原式变形,进而利用平移规律得出答案【详解】y=x26x+21=(x212x)+21=(x6)216+21=(x6)2+1,故y=(x6)2+1,向左平移2个单位后,得到新抛物线的解析式为:y=(x4)2+1故选D【点睛】本题考查了二次函数图象与几何变换,熟记函数图象平移的规律并正确配方将原式变形是解题关键8、B【解析】利用对顶角的性质、平方根的性质、锐角和钝角的定义分别判断后即可确定正确的选
17、项【详解】A、若a2=b2,则a=b,错误,是假命题;B、4的平方根是2,正确,是真命题;C、两个锐角的和不一定是钝角,故错误,是假命题;D、相等的两个角不一定是对顶角,故错误,是假命题.故选B【点睛】考查了命题与定理的知识,解题的关键是了解对顶角的性质、平方根的性质、锐角和钝角的定义,难度不大9、B【解析】主视图是从物体正面看所得到的图形【详解】解:从几何体正面看故选B【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图10、A【解析】观察四个选项图形,根据轴对称图形的概念即可得出结论【详解】根据轴对称图形的概念,可知:选项A中的图形不是轴对称图形故选A【点睛】此题主要考查了轴对
18、称图形,轴对称图形的关键是寻找对称轴,对称轴可使图形两部分折叠后重合11、C【解析】试题分析:原式去括号可得b-c+d+a=(a+b)-(c-d)=4-(-3)=1故选A考点:代数式的求值;整体思想12、C【解析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相减;同底数幂相除,底数不变指数相减对各选项分析判断即可得解【详解】A、a2a3=a2+3=a5,故本选项错误;B、a2+a3不能进行运算,故本选项错误;C、(a2)3=a23=a6,故本选项正确;D、a12a6=a126=a6,故本选项错误故选:C【点睛】本题考查了同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算法则是
19、解题的关键二、填空题:(本大题共6个小题,每小题4分,共24分)13、a1【解析】根据二次函数的图像,由抛物线y=ax2+5的顶点是它的最低点,知a1,故答案为a114、(-,1)【解析】根据如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或k进行解答【详解】解:以原点O为位似中心,相似比为:2:1,将OAB缩小为OAB,点B(3,2)则点B(3,2)的对应点B的坐标为:(-,1),故答案为(-,1)【点睛】本题考查了位似变换:位似图形与坐标,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或k15、S=1n-1【
20、解析】观察可得,n=2时,S=1;n=3时,S=1+(3-2)1=12;n=4时,S=1+(4-2)1=18;所以,S与n的关系是:S=1+(n-2)1=1n-1故答案为S=1n-1【点睛】本题是一道找规律的题目,这类题型在中考中经常出现对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的16、【解析】让黄球的个数除以球的总个数即为所求的概率【详解】解:因为一共10个球,其中3个黄球,所以从袋中任意摸出2个球是黄球的概率是故答案为:【点睛】本题考查了概率的基本计算,用到的知识点为:概率等于所求情况数与总情况数之比17、4【解析】:由反比例函数解析式可知:系数,SAOB=2即,;又
21、由双曲线在二、四象限k0,k=-418、6.7106【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】解:6700000用科学记数法表示应记为6.7106,故选6.7106.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为ax10n的形式,其中1|a|10,n为整数;表示时关键要正确确定a的值以及n的值.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)证明见解析(2)3
22、【解析】(1)连接,由为的中点,得到,等量代换得到,根据平行线的性质得到,即可得到结论;(2)连接,由勾股定理得到,根据切割线定理得到,根据勾股定理得到,由圆周角定理得到,即可得到结论.【详解】相切,连接,为的中点,直线与相切;方法:连接,是的切线,为的中点,为的直径,方法:,易得,【点睛】本题考查了直线与圆的位置关系,切线的判定和性质,圆周角定理,勾股定理,平行线的性质,切割线定理,熟练掌握各定理是解题的关键.20、【解析】设灯柱BC的长为h米,过点A作AHCD于点H,过点B作BEAH于点E,构造出矩形BCHE,RtAEB,然后解直角三角形求解【详解】解:设灯柱的长为米,过点作于点过点做于点
23、四边形为矩形,又在中,又在中,解得,(米)灯柱的高为米.21、(1);(2);(2)小贝的说法正确,理由见解析,【解析】(1)连接AC,BD,由OE垂直平分DC可得DH长,易知OH、HE长,相加即可;(2)补全O,连接AO并延长交O右半侧于点P,则此时A、P之间的距离最大,在RtAOD中,由勾股定理可得AO长,易求AP长;(1)小贝的说法正确,补全弓形弧AD所在的O,连接ON,OA,OD,过点O作OEAB于点E,连接BO并延长交O上端于点P,则此时B、P之间的距离即为门角B到门窗弓形弧AD的最大距离,在RtANO中,设AO=r,由勾股定理可求出r,在RtOEB中,由勾股定理可得BO长,易知BP
24、长.【详解】解:(1)如图1,连接AC,BD,对角线交点为O,连接OE交CD于H,则OD=OCDCE为等边三角形,ED=EC,OD=OCOE垂直平分DC,DHDC=1四边形ABCD为正方形,OHD为等腰直角三角形,OH=DH=1,在RtDHE中,HEDH=1,OE=HE+OH=11;(2)如图2,补全O,连接AO并延长交O右半侧于点P,则此时A、P之间的距离最大,在RtAOD中,AD=6,DO=1,AO1, AP=AO+OP=11;(1)小贝的说法正确理由如下,如图1,补全弓形弧AD所在的O,连接ON,OA,OD,过点O作OEAB于点E,连接BO并延长交O上端于点P,则此时B、P之间的距离即为
25、门角B到门窗弓形弧AD的最大距离,由题意知,点N为AD的中点,ANAD=1.6,ONAD,在RtANO中,设AO=r,则ON=r1.2AN2+ON2=AO2,1.62+(r1.2)2=r2,解得:r,AE=ON1.2,在RtOEB中,OE=AN=1.6,BE=ABAE,BO,BP=BO+PO,门角B到门窗弓形弧AD的最大距离为【点睛】本题考查了圆与多边形的综合,涉及了圆的有关概念及性质、等边三角形的性质、正方形和长方形的性质、勾股定理等,灵活的利用两点之间线段最短,添加辅助线将题中所求最大距离转化为圆外一点到圆上的最大距离是解题的关键.22、(1)40;(2)72;(3)1【解析】(1)用最想
26、去A景点的人数除以它所占的百分比即可得到被调查的学生总人数;(2)先计算出最想去D景点的人数,再补全条形统计图,然后用360乘以最想去D景点的人数所占的百分比即可得到扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)用800乘以样本中最想去A景点的人数所占的百分比即可【详解】(1)被调查的学生总人数为820%=40(人);(2)最想去D景点的人数为4081446=8(人),补全条形统计图为:扇形统计图中表示“最想去景点D”的扇形圆心角的度数为360=72;(3)800=1,所以估计“最想去景点B“的学生人数为1人23、(1)1;(2)-1x1.【解析】试题分析:(1)、首先根据绝对值、
27、幂、三角函数的计算法则得出各式的值,然后进行求和得出答案;(2)、分半求出每个不等式的解,然后得出不等式组的解试题解析:解:(1)、(2)、 由得:x1,由得:x-1,不等式的解集:-1x124、(1)一次函数为,反比例函数为;(2)AHO的周长为12【解析】分析:(1)根据正切函数可得AH=4,根据反比例函数的特点k=xy为定值,列出方程,求出k的值,便可求出反比例函数的解析式;根据k的值求出B两点的坐标,用待定系数法便可求出一次函数的解析式(2)由(1)知AH的长,根据勾股定理,可得AO的长,根据三角形的周长,可得答案.详解:(1)tanAOH= AH=OH=4 A(-4,3),代入,得k
28、=-43=-12 反比例函数为 m=6 B(6,-2)=,b=1 一次函数为 (2) AHO的周长为:3+4+5=12点睛:此题考查的是反比例函数图象上点的坐标特点及用待定系数法求一次函数及反比例函数的解析式25、(1)每次运输的农产品中A产品有10件,每次运输的农产品中B产品有30件,(2)产品件数增加后,每次运费最少需要1120元【解析】(1)设每次运输的农产品中A产品有x件,每次运输的农产品中B产品有y件,根据表中的数量关系列出关于x和y的二元一次方程组,解之即可,(2)设增加m件A产品,则增加了(8-m)件B产品,设增加供货量后得运费为W元,根据(1)的结果结合图表列出W关于m的一次函
29、数,再根据“总件数中B产品的件数不得超过A产品件数的2倍”,列出关于m的一元一次不等式,求出m的取值范围,再根据一次函数的增减性即可得到答案【详解】解:(1)设每次运输的农产品中A产品有x件,每次运输的农产品中B产品有y件,根据题意得:,解得:,答:每次运输的农产品中A产品有10件,每次运输的农产品中B产品有30件,(2)设增加m件A产品,则增加了(8-m)件B产品,设增加供货量后得运费为W元,增加供货量后A产品的数量为(10+m)件,B产品的数量为30+(8-m)=(38-m)件,根据题意得:W=30(10+m)+20(38-m)=10m+1060,由题意得:38-m2(10+m),解得:m
30、6,即6m8,一次函数W随m的增大而增大当m=6时,W最小=1120,答:产品件数增加后,每次运费最少需要1120元【点睛】本题考查了一次函数的应用,二元一次方程组的应用和一元一次不等式得应用,解题的关键:(1)正确根据等量关系列出二元一次方程组,(2)根据数量关系列出一次函数和不等式,再利用一次函数的增减性求最值26、(1)a=0.3,b=4;(2)99人;(3)【解析】分析:(1)由统计图易得a与b的值,继而将统计图补充完整;(2)利用用样本估计总体的知识求解即可求得答案;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两人正好都是甲班学生的情况,再利用概率公式即可求得
31、答案详解:(1)a=1-0.15-0.35-0.20=0.3;总人数为:30.15=20(人),b=200.20=4(人);故答案为:0.3,4;补全统计图得:(2)估计仰卧起坐能够一分钟完成30或30次以上的女学生有:180(0.35+0.20)=99(人);(3)画树状图得:共有12种等可能的结果,所选两人正好都是甲班学生的有3种情况,所选两人正好都是甲班学生的概率是:点睛:此题考查了列表法或树状图法求概率以及条形统计图的知识用到的知识点为:概率=所求情况数与总情况数之比27、 (1)证明见解析;(2)1-.【解析】(1)解直角三角形求出BC,根据勾股定理求出AB,根据三角形面积公式求出CF,根据切线的判定得出即可;(2)分别求出ACB的面积和扇形DCE的面积,即可得出答案【详解】(1)过C作CFAB于F在RtABC中,C90,AC,tanB,BC2,由勾股定理得:AB1ACB的面积S,CF2,CF为C的半径CFAB,AB为C的切线;(2)图中阴影部分的面积SACBS扇形DCE1【点睛】本题考查了勾股定理,扇形的面积,解直角三角形,切线的性质和判定等知识点,能求出CF的长是解答此题的关键