《安徽省寿县重点达标名校2023届中考考前最后一卷数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《安徽省寿县重点达标名校2023届中考考前最后一卷数学试卷含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1已知二次函数的图象与轴交于点、,且,与轴的正半轴的交点在的下方下列结论:;其中正确结论的个数是( )个A4个B3个C2个D1个2如图,在矩形ABCD中,E,F分别是边AB,CD上的点,AE=CF,连接EF,BF,EF与对角线AC交于点O,且BE=BF,BEF=2BAC,FC=2,则AB的长为
2、()A8B8C4D63如图,已知点E在正方形ABCD内,满足AEB=90,AE=6,BE=8,则阴影部分的面积是()A48B60C76D804如图,在半径为5的O中,弦AB=6,点C是优弧上一点(不与A,B重合),则cosC的值为()ABCD5下列各式:3+3=6;=1;+=2;=2;其中错误的有( )A3个B2个C1个D0个6若一个三角形的两边长分别为5和7,则该三角形的周长可能是()A12B14C15D257某市公园的东、西、南、北方向上各有一个入口,周末佳佳和琪琪随机从一个入口进入该公园游玩,则佳佳和琪琪恰好从同一个入口进入该公园的概率是( )ABCD8某校在国学文化进校园活动中,随机统
3、计50名学生一周的课外阅读时间如表所示,这组数据的众数和中位数分别是()学生数(人)5814194时间(小时)678910A14,9B9,9C9,8D8,99小手盖住的点的坐标可能为( )ABCD10下列四个图形中,是中心对称图形但不是轴对称图形的是()ABCD二、填空题(共7小题,每小题3分,满分21分)11袋中装有红、绿各一个小球,随机摸出1个小球后放回,再随机摸出一个,则第一次摸到红球,第二次摸到绿球的概率是_12直线yx+1分别交x轴,y轴于A、B两点,则AOB的面积等于_13如图,已知直线mn,1100,则2的度数为_14已知二次函数的图像与轴交点的横坐标是和,且,则_15两个完全相
4、同的正五边形都有一边在直线l上,且有一个公共顶点O,其摆放方式如图所示,则AOB等于 _ 度16如图,一次函数y=x2的图象与反比例函数y=(k0)的图象相交于A、B两点,与x轴交与点C,若tanAOC=,则k的值为_17为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛如图所示,按照这样的规律,摆第n个图,需用火柴棒的根数为_三、解答题(共7小题,满分69分)18(10分)如图,在平面直角坐标系中,直线:与轴,轴分别交于,两点,且点,点在轴正半轴上运动,过点作平行于轴的直线(1)求的值和点的坐标;(2)当时,直线与直线交于点,反比例函数的图象经过点,求反比例函数的解析式;(3)当时,若
5、直线与直线和(2)反比例函数的图象分别交于点,当间距离大于等于2时,求的取值范围19(5分)在平面直角坐标系xOy中,抛物线,与x轴交于点C,点C在点D的左侧,与y轴交于点A求抛物线顶点M的坐标;若点A的坐标为,轴,交抛物线于点B,求点B的坐标;在的条件下,将抛物线在B,C两点之间的部分沿y轴翻折,翻折后的图象记为G,若直线与图象G有一个交点,结合函数的图象,求m的取值范围20(8分)如图,在图中求作P,使P满足以线段MN为弦且圆心P到AOB两边的距离相等(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑)21(10分)如图,ABC内接与O,AB是直径,O的切线PC交BA的
6、延长线于点P,OFBC交AC于AC点E,交PC于点F,连接AF(1)判断AF与O的位置关系并说明理由;(2)若O的半径为4,AF=3,求AC的长22(10分)已知:如图,在正方形ABCD中,点E在边CD上,AQBE于点Q,DPAQ于点P求证:AP=BQ;在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长23(12分)随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷每人必选且只选一种,在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:这
7、次统计共抽查了_名学生;在扇形统计图中,表示“QQ”的扇形圆心角的度数为_;将条形统计图补充完整;该校共有1500名学生,请估计该校最喜欢用“微信”进行沟通的学生有多少名.24(14分)城市小区生活垃圾分为:餐厨垃圾、有害垃圾、可回收垃圾、其他垃圾四种不同的类型(1)甲投放了一袋垃圾,恰好是餐厨垃圾的概率是 ;(2)甲、乙分别投放了一袋垃圾,求恰好是同一类型垃圾的概率参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】分析:根据已知画出图象,把x=2代入得:4a2b+c=0,把x=1代入得:y=ab+c0,根据不等式的两边都乘以a(a2a,由4a2b+c=0得而0
8、c0.详解:根据二次函数y=ax2+bx+c的图象与x轴交于点(2,0)、(x1,0),且1x10,如图A点,错误;(2,0)、(x1,0),且1x1,取符合条件1x12的任何一个x1,2x12,由一元二次方程根与系数的关系知 不等式的两边都乘以a(a2a, 2a+c0,正确;由4a2b+c=0得 而0c2, 12ab0,正确.所以三项正确故选B.点睛:属于二次函数综合题,考查二次函数图象与系数的关系, 二次函数图象上点的坐标特征, 抛物线与轴的交点,属于常考题型.2、D【解析】分析: 连接OB,根据等腰三角形三线合一的性质可得BOEF,再根据矩形的性质可得OA=OB,根据等边对等角的性质可得
9、BAC=ABO,再根据三角形的内角和定理列式求出ABO=30,即BAC=30,根据直角三角形30角所对的直角边等于斜边的一半求出AC,再利用勾股定理列式计算即可求出AB.详解: 如图,连接OB,BE=BF,OE=OF,BOEF,在RtBEO中,BEF+ABO=90,由直角三角形斜边上的中线等于斜边上的一半可知:OA=OB=OC,BAC=ABO,又BEF=2BAC,即2BAC+BAC=90,解得BAC=30,FCA=30,FBC=30,FC=2,BC=2,AC=2BC=4,AB=6,故选D点睛: 本题考查了矩形的性质,全等三角形的判定与性质,等腰三角形三线合一的性质,直角三角形30角所对的直角边
10、等于斜边的一半,综合题,但难度不大,(2)作辅助线并求出BAC=30是解题的关键.3、C【解析】试题解析:AEB=90,AE=6,BE=8,AB=S阴影部分=S正方形ABCD-SRtABE=102-=100-24=76.故选C.考点:勾股定理.4、D【解析】解:作直径AD,连结BD,如图AD为直径,ABD=90在RtABD中,AD=10,AB=6,BD=8,cosD=C=D,cosC=故选D点睛:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半推论:半圆(或直径)所对的圆周角是直角,90的圆周角所对的弦是直径也考查了解直角三角形5、A【解析】3+
11、3=6,错误,无法计算; =1,错误;+=2不能计算;=2,正确.故选A.6、C【解析】先根据三角形三条边的关系求出第三条边的取值范围,进而求出周长的取值范围,从而可的求出符合题意的选项.【详解】三角形的两边长分别为5和7,2第三条边12,5+7+2三角形的周长5+7+12,即14三角形的周长24,故选C.【点睛】本题考查了三角形三条边的关系:三角形任意两边之和大于第三边,任意两边之差小于第三边,据此解答即可.7、B【解析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得佳佳和琪琪恰好从同一个入口进入该公园的情况,再利用概率公式求解即可求得答案【详解】画树状图如下:由树状图可知
12、,共有16种等可能结果,其中佳佳和琪琪恰好从同一个入口进入该公园的有4种等可能结果,所以佳佳和琪琪恰好从同一个入口进入该公园的概率为,故选B【点睛】本题考查的是用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件注意概率=所求情况数与总情况数之比8、C【解析】解:观察、分析表格中的数据可得:课外阅读时间为1小时的人数最多为11人,众数为1将这组数据按照从小到大的顺序排列,第25个和第26个数据的均为2,中位数为2故选C【点睛】本题考查(1)众数是一组数据中出现次数最多的数;(2)中位数的确定要分两种情
13、况:当数据组中数据的总个数为奇数时,把所有数据按从小到大的顺序排列,中间的那个数就是中位数;当数据组中数据的总个数为偶数时,把所有数据按从小到大的顺序排列,中间的两个数的平均数是这组数据的中位数.9、B【解析】根据题意,小手盖住的点在第四象限,结合第四象限点的坐标特点,分析选项可得答案【详解】根据图示,小手盖住的点在第四象限,第四象限的点坐标特点是:横正纵负;分析选项可得只有B符合故选:B【点睛】此题考查点的坐标,解题的关键是记住各象限内点的坐标的符号,进而对号入座,四个象限的符号特点分别是:第一象限(,);第二象限(,);第三象限(,);第四象限(,)10、D【解析】根据轴对称图形与中心对称
14、图形的概念判断即可【详解】A、是轴对称图形,不是中心对称图形; B、是轴对称图形,不是中心对称图形; C、是轴对称图形,不是中心对称图形; D、不是轴对称图形,是中心对称图形 故选D【点睛】本题考查的是中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合二、填空题(共7小题,每小题3分,满分21分)11、【解析】解:列表如下:所有等可能的情况有4种,所以第一次摸到红球,第二次摸到绿球的概率=故答案为12、.【解析】先求得直线yx+1与x轴,y轴的交点坐标,再根据三角形的面积公式求得AOB的面积即可.【详解】直
15、线yx+1分别交x轴、y轴于A、B两点,A、B点的坐标分别为(1,0)、(0,1),SAOBOAOB11,故答案为【点睛】本题考查了直线与坐标轴的交点坐标及三角形的面积公式,正确求得直线yx+1与x轴、y轴的交点坐标是解决问题的关键.13、80【解析】如图,已知mn,根据平行线的性质可得13,再由平角的定义即可求得2的度数.【详解】如图,mn,13,1100,3100,218010080,故答案为80【点睛】本题考查了平行线的性质,熟练运用平行线的性质是解决问题的关键.14、12【解析】令y=0,得方程,和即为方程的两根,利用根与系数的关系求得和,利用完全平方式并结合即可求得k的值【详解】解:
16、二次函数的图像与轴交点的横坐标是和,令y=0,得方程,则和即为方程的两根,两边平方得:,即,解得:,故答案为:【点睛】本题考查了一元二次方程与二次函数的关系,函数与x轴的交点的横坐标就是方程的根,解题的关键是利用根与系数的关系,整体代入求解15、108【解析】如图,易得OCD为等腰三角形,根据正五边形内角度数可求出OCD,然后求出顶角COD,再用360减去AOC、BOD、COD即可【详解】五边形是正五边形,每一个内角都是108,OCD=ODC=180-108=72,COD=36,AOB=360-108-108-36=108.故答案为108【点睛】本题考查正多边形的内角计算,分析出OCD是等腰三
17、角形,然后求出顶角是关键.16、1【解析】【分析】如图,过点A作ADx轴,垂足为D,根据题意设出点A的坐标,然后根据一次函数y=x2的图象与反比例函数y=(k0)的图象相交于A、B两点,可以求得a的值,进而求得k的值即可.【详解】如图,过点A作ADx轴,垂足为D,tanAOC=,设点A的坐标为(1a,a),一次函数y=x2的图象与反比例函数y=(k0)的图象相交于A、B两点,a=1a2,得a=1,1=,得k=1,故答案为:1【点睛】本题考查了正切,反比例函数与一次函数的交点问题,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答17、6n+1【解析】寻找规律:不难发现,后
18、一个图形比前一个图形多6根火柴棒,即:第1个图形有8根火柴棒,第1个图形有14618根火柴棒,第3个图形有10618根火柴棒,第n个图形有6n+1根火柴棒三、解答题(共7小题,满分69分)18、(1),;(2);的取值范围是:【解析】(1)把代入得出的值,进而得出点坐标;(2)当时,将代入,进而得出的值,求出点坐标得出反比例函数的解析式;(3)可得,当向下运动但是不超过轴时,符合要求,进而得出的取值范围【详解】解:(1)直线: 经过点,;(2)当时,将代入,得,代入得,;(3)当时,即,而,如图,当向下运动但是不超过轴时,符合要求,的取值范围是:【点睛】本题考查了反比例函数与一次函数的交点,当
19、有两个函数的时候,着重使用一次函数,体现了方程思想,综合性较强19、(1)M的坐标为;(2)B(4,3);(3)或【解析】利用配方法将已知函数解析式转化为顶点式方程,可以直接得到答案 根据抛物线的对称性质解答;利用待定系数法求得抛物线的表达式为根据题意作出图象G,结合图象求得m的取值范围【详解】解:(1) ,该抛物线的顶点M的坐标为;由知,该抛物线的顶点M的坐标为;该抛物线的对称轴直线是,点A的坐标为,轴,交抛物线于点B,点A与点B关于直线对称,;抛物线与y轴交于点,抛物线的表达式为抛物线G的解析式为:由由,得:抛物线与x轴的交点C的坐标为,点C关于y轴的对称点的坐标为把代入,得:把代入,得:
20、所求m的取值范围是或故答案为(1)M的坐标为;(2)B(4,3);(3)或【点睛】本题考查了二次函数图象与几何变换,待定系数法求二次函数的解析式、二次函数的图象和性质,画出函数G的图象是解题的关键20、见解析【解析】试题分析:先做出AOB的角平分线,再求出线段MN的垂直平分线就得到点P试题解析:考点:尺规作图角平分线和线段的垂直平分线、圆的性质21、解:(1)AF与圆O的相切理由为:如图,连接OC,PC为圆O切线,CPOCOCP=90OFBC,AOF=B,COF=OCBOC=OB,OCB=BAOF=COF在AOF和COF中,OA=OC,AOF=COF,OF=OF,AOFCOF(SAS)OAF=
21、OCF=90AF为圆O的切线,即AF与O的位置关系是相切(2)AOFCOF,AOF=COFOA=OC,E为AC中点,即AE=CE=AC,OEACOAAF,在RtAOF中,OA=4,AF=3,根据勾股定理得:OF=1SAOF=OAAF=OFAE,AE=AC=2AE=【解析】试题分析:(1)连接OC,先证出3=2,由SAS证明OAFOCF,得对应角相等OAF=OCF,再根据切线的性质得出OCF=90,证出OAF=90,即可得出结论;(2)先由勾股定理求出OF,再由三角形的面积求出AE,根据垂径定理得出AC=2AE试题解析:(1)连接OC,如图所示:AB是O直径,BCA=90,OFBC,AEO=90
22、,1=2,B=3,OFAC,OC=OA,B=1,3=2,在OAF和OCF中,OAFOCF(SAS),OAF=OCF,PC是O的切线,OCF=90,OAF=90,FAOA,AF是O的切线;(2)O的半径为4,AF=3,OAF=90,OF=1FAOA,OFAC,AC=2AE,OAF的面积=AFOA=OFAE,34=1AE,解得:AE=,AC=2AE=考点:1.切线的判定与性质;2.勾股定理;3.相似三角形的判定与性质22、(1)证明见解析;(2)AQAP=PQ,AQBQ=PQ,DPAP=PQ,DPBQ=PQ.【解析】试题分析:(1)利用AAS证明AQBDPA,可得AP=BQ;(2)根据AQAP=P
23、Q和全等三角形的对应边相等可写出4对线段.试题解析:(1)在正方形中ABCD中,AD=BA,BAD=90,BAQ+DAP=90,DPAQ,ADP+DAP=90,BAQ=ADP,AQBE于点Q,DPAQ于点P,AQB=DPA=90,AQBDPA(AAS),AP=BQ.(2)AQAP=PQ,AQBQ=PQ,DPAP=PQ,DPBQ=PQ.考点:(1)正方形;(2)全等三角形的判定与性质.23、(1)100,108;(2)答案见解析;(3)600人.【解析】(1)先利用QQ计算出宗人数,再用百分比计算度数;(2)按照扇形图补充条形图;(3)利用微信沟通所占百分比计算总人数.【详解】解:(1)喜欢用电
24、话沟通的人数为20,所占百分比为20%,此次共抽查了:2020%=100人.喜欢用QQ沟通所占比例为:,QQ的扇形圆心角的度数为:360=108. (2)喜欢用短信的人数为:1005%=5人喜欢用微信的人数为:100-20-5-30-5=40补充图形,如图所示:(3)喜欢用微信沟通所占百分比为:100%=40%.该校共有1500名学生,估计该校最喜欢用“微信”进行沟通的学生有:150040%=600人 .【点睛】本题考查的是条形统计图和扇形统计图的综合运用读懂统计图,从统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据24、(1);(2)【解析】(1)直接利用概率公式求出甲投放的垃圾恰好是“餐厨垃圾”的概率;(2)首先利用树状图法列举出所有可能,进而利用概率公式求出答案【详解】解:(1)垃圾要按餐厨垃圾、有害垃圾、可回收垃圾、其他垃圾四类分别装袋,甲投放了一袋垃圾,甲投放了一袋是餐厨垃圾的概率是,故答案为:;(2)记这四类垃圾分别为A、B、C、D,画树状图如下:由树状图知,甲、乙投放的垃圾共有16种等可能结果,其中投放的两袋垃圾同类的有4种结果,所以投放的两袋垃圾同类的概率为=【点睛】本题考查了用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件用到的知识点为:概率=所求情况数与总情况数之比