《安徽省马鞍山市当涂县2023届初中数学毕业考试模拟冲刺卷含解析.doc》由会员分享,可在线阅读,更多相关《安徽省马鞍山市当涂县2023届初中数学毕业考试模拟冲刺卷含解析.doc(13页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1某校为了了解七年级女同学的800米跑步情况,随机抽取部分女同学进行800米跑测试,按照成绩分为优秀、良好、合格、不合格四个等级,绘制了如图所示统计图. 该校七年级有400名女生,
2、则估计800米跑不合格的约有( )A2人B16人C20人D40人2如图,ABCD,点E在CA的延长线上.若BAE=40,则ACD的大小为( )A150B140C130D1203如图,点A,B,C在O上,ACB=30,O的半径为6,则的长等于()AB2C3D44把多项式ax32ax2+ax分解因式,结果正确的是()Aax(x22x)Bax2(x2)Cax(x+1)(x1)Dax(x1)25如图,由四个正方体组成的几何体的左视图是( )ABCD6如图,ABCD,点E在线段BC上,若140,230,则3的度数是()A70B60C55D507对于下列调查:对从某国进口的香蕉进行检验检疫;审查某教科书稿
3、;中央电视台“鸡年春晚”收视率.其中适合抽样调查的是( )A B C D8若 | =,则一定是( )A非正数B正数C非负数D负数97的相反数是( )A7B7CD10如图,在四边形ABCD中,ADBC,ABC+DCB=90,且BC=2AD,分别以AB、BC、DC为边向外作正方形,它们的面积分别为S1、S2、S1若S2=48,S1=9,则S1的值为()A18B12C9D1二、填空题(本大题共6个小题,每小题3分,共18分)11关于的一元二次方程有两个相等的实数根,则的值等于_12如图所示,点C在反比例函数的图象上,过点C的直线与x轴、y轴分别交于点A、B,且,已知的面积为1,则k的值为_13如图,
4、在ABC中,AB=5cm,AC=3cm,BC的垂直平分线分别交AB、BC于D、E,则ACD的周长为 cm14一元二次方程x(x2)=x2的根是_15因式分解_.16方程的解是_三、解答题(共8题,共72分)17(8分)先化简,再求值:(x+1),其中x=sin30+21+18(8分)如图,的顶点是方格纸中的三个格点,请按要求完成下列作图,仅用无刻度直尺,且不能用直尺中的直角;保留作图痕迹.在图1中画出边上的中线;在图2中画出,使得.19(8分)如图,小明今年国庆节到青城山游玩,乘坐缆车,当登山缆车的吊箱经过点A到达点B时,它经过了200m,缆车行驶的路线与水平夹角16,当缆车继续由点B到达点D
5、时,它又走过了200m,缆车由点B到点D的行驶路线与水平面夹角42,求缆车从点A到点D垂直上升的距离(结果保留整数)(参考数据:sin160.27,cos160.77,sin420.66,cos420.74)20(8分)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:售价x/(元/千克)506070销售量y/千克1008060 (1)求y与x之间的函数表达式;设商品每天的总利润为W(元),求W与x之间的函数表达式(利润收入成本);试说明(2)中总利润W随售价x的变化而变化的情况
6、,并指出售价为多少时获得最大利润,最大利润是多少?21(8分)某商场甲、乙两名业务员10个月的销售额(单位:万元)如下:甲7.2 9.69.67.89.3 4 6.58.59.99.6乙5.89.79.76.89.96.98.26.78.69.7根据上面的数据,将下表补充完整:4.0x4.95.0x5.96.0x6.97.0x7.98.0x8.99.0x10.0甲101215乙_(说明:月销售额在8.0万元及以上可以获得奖金,7.07.9万元为良好,6.06.9万元为合格,6.0万元以下为不合格)两组样本数据的平均数、中位数、众数如表所示:结论:人员平均数(万元)中位数(万元)众数(万元)甲8
7、.28.99.6乙8.28.49.7(1)估计乙业务员能获得奖金的月份有_个;(2)可以推断出_业务员的销售业绩好,理由为_(至少从两个不同的角度说明推断的合理性)22(10分)某水果批发市场香蕉的价格如下表购买香蕉数(千克)不超过20千克20千克以上但不超过40千克40千克以上每千克的价格6元5元4元张强两次共购买香蕉50千克,已知第二次购买的数量多于第一次购买的数量,共付出264元,请问张强第一次,第二次分别购买香蕉多少千克?23(12分)如图,ACBD,DE交AC于E,ABDE,AD求证:ACAE+BC244100米拉力赛是学校运动会最精彩的项目之一图中的实线和虚线分别是初三一班和初三二
8、班代表队在比赛时运动员所跑的路程y(米)与所用时间x(秒)的函数图象(假设每名运动员跑步速度不变,交接棒时间忽略不计)问题:(1)初三二班跑得最快的是第 接力棒的运动员;(2)发令后经过多长时间两班运动员第一次并列?参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】先求出800米跑不合格的百分率,再根据用样本估计总体求出估值【详解】400人.故选C【点睛】考查了频率分布直方图,以及用样本估计总体,关键是从上面可得到具体的值2、B【解析】试题分析:如图,延长DC到F,则ABCD,BAE=40,ECF=BAE=40.ACD=180-ECF=140.故选B考点:1.平行线的性质;2
9、.平角性质.3、B【解析】根据圆周角得出AOB60,进而利用弧长公式解答即可【详解】解:ACB30,AOB60,的长2,故选B【点睛】此题考查弧长的计算,关键是根据圆周角得出AOB604、D【解析】先提取公因式ax,再根据完全平方公式把x22x+1继续分解即可.【详解】原式=ax(x22x+1)=ax(x1)2,故选D【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:提公因式法;公式法;十字相乘法;分组分解法. 因式分解必须分解到每个因式都不能再分解为止.5、B【解析】从左边看可以看到两个小正方形摞在一起,故选B.6、A【解析】试题分析:AB
10、CD,1=40,1=30,C=403是CDE的外角,3=C+2=40+30=70故选A考点:平行线的性质7、B【解析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答【详解】对从某国进口的香蕉进行检验检疫适合抽样调查;审查某教科书稿适合全面调查;中央电视台“鸡年春晚”收视率适合抽样调查.故选B.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查8、A【解析】根据绝对
11、值的性质进行求解即可得.【详解】|-x|=-x,又|-x|1,-x1,即x1,即x是非正数,故选A【点睛】本题考查了绝对值的性质,熟练掌握绝对值的性质是解题的关键.绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;1的绝对值是19、B【解析】根据只有符号不同的两个数互为相反数,可得答案【详解】7的相反数是7,故选:B.【点睛】此题考查相反数,解题关键在于掌握其定义.10、D【解析】过A作AHCD交BC于H,根据题意得到BAE=90,根据勾股定理计算即可【详解】S2=48,BC=4,过A作AHCD交BC于H,则AHB=DCBADBC,四边形AHCD是平行四边形,CH=BH=A
12、D=2,AH=CD=1ABC+DCB=90,AHB+ABC=90,BAH=90,AB2=BH2AH2=1,S1=1故选D【点睛】本题考查了勾股定理,正方形的性质,平行四边形的判定和性质,正确的作出辅助线是解题的关键二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】分析:先根据根的判别式得到a-1=,把原式变形为,然后代入即可得出结果.详解:由题意得:= , ,即a(a-1)=1, a-1=,故答案为-3.点睛:本题考查了一元二次方程ax+bx+c=0(a0)的根的判别式=b-4ac:当0, 方程有两个不相等的实数根;当0, 方程没有实数根;当=0,方程有两个,相等的实数根,也考
13、查了一元二次方程的定义.12、1【解析】根据题意可以设出点A的坐标,从而以得到点C和点B的坐标,再根据的面积为1,即可求得k的值【详解】解:设点A的坐标为,过点C的直线与x轴,y轴分别交于点A,B,且,的面积为1,点,点B的坐标为,解得,故答案为:1【点睛】本题考查了反比例函数系数k的几何意义、一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征,解题关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答13、8【解析】试题分析:根据线段垂直平分线的性质得,BD=CD,则AB=AD+CD,所以,ACD的周长=AD+CD+AC=AB+AC,解答出即可解:DE是BC的垂直平分线,BD=
14、CD,AB=AD+BD=AD+CD,ACD的周长=AD+CD+AC=AB+AC=8cm;故答案为8考点:线段垂直平分线的性质点评:本题主要考查了线段垂直平分线的性质和三角形的周长,掌握线段的垂直平分线上的点到线段两端点的距离相等14、1或1【解析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可得答案【详解】x(x1)=x1,x(x1)(x1)=0,(x1)(x1)=0,x1=0,x1=0,x1=1,x1=1,故答案为:1或1【点睛】本题考查了解一元二次方程的应用,能把一元二次方程转化成一元一次方程是解此题的关键15、a(3a+1)【解析】3a2+a=a(3a+1),故答案为a(3a
15、+1)16、x=-2【解析】方程两边同时平方得:,解得:,检验:(1)当x=3时,方程左边=-3,右边=3,左边右边,因此3不是原方程的解;(2)当x=-2时,方程左边=2,右边=2,左边=右边,因此-2是方程的解.原方程的解为:x=-2.故答案为:-2.点睛:(1)根号下含有未知数的方程叫无理方程,解无理方程的基本思想是化“无理方程”为“有理方程”;(2)解无理方程和解分式方程相似,求得未知数的值之后要检验,看所得结果是原方程的解还是增根.三、解答题(共8题,共72分)17、-5【解析】根据分式的运算法则以及实数的运算法则即可求出答案【详解】当x=sin30+21+时,x=+2=3,原式=5
16、.【点睛】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型18、(1)见解析;(2)见解析.【解析】(1)利用矩形的性质得出AB的中点,进而得出答案(2)利用矩形的性质得出AC、BC的中点,连接并延长,使延长线段与连接这两个中点的线段相等.【详解】(1)如图所示:CD即为所求.(2)【点睛】本题考查应用设计与作图,正确借助矩形性质和网格分析是解题关键19、缆车垂直上升了186 m【解析】在Rt中,米,在Rt中,即可求出缆车从点A到点D垂直上升的距离【详解】解:在Rt中,斜边AB=200米,=16,(m),在Rt中,斜边BD=200米,=42, 因此缆车垂直上升的距离
17、应该是BC+DF=186(米)答:缆车垂直上升了186米【点睛】本题考查了解直角三角形的应用-坡度坡角问题,锐角三角函数的定义,结合图形理解题意是解决问题的关键20、 (1)y2x200 (2)W2x2280x8 000(3)售价为70元时,获得最大利润,这时最大利润为1 800元【解析】(1)用待定系数法求一次函数的表达式;(2)利用利润的定义,求与之间的函数表达式;(3)利用二次函数的性质求极值.【详解】解:(1)设,由题意,得,解得,所求函数表达式为.(2).(3),其中,当时,随的增大而增大,当时,随的增大而减小,当售价为70元时,获得最大利润,这时最大利润为1800元.考点: 二次函
18、数的实际应用.21、填表见解析;(1)6;(2)甲;甲的销售额的中位数较大,并且甲月销售额在9万元以上的月份多【解析】(1)月销售额在8.0万元及以上可以获得奖金,去销售额中找到乙大于8.0的个数即可解题,(2)根据中位数和平均数即可解题.【详解】解:如图,销售额数量x人员4.0x4.95.0x5.96.0x6.97.0x7.98.0x8.99.0x10.0甲101215乙013024(1)估计乙业务员能获得奖金的月份有6个;(2)可以推断出甲业务员的销售业绩好,理由为:甲的销售额的中位数较大,并且甲月销售额在9万元以上的月份多故答案为0,1,3,0,2,4;6;甲,甲的销售额的中位数较大,并
19、且甲月销售额在9万元以上的月份多【点睛】本题考查了统计的相关知识,众数,平均数的应用,属于简单题,将图表信息转换成有用信息是解题关键.22、第一次买14千克香蕉,第二次买36千克香蕉【解析】本题两个等量关系为:第一次买的千克数+第二次买的千克数=50;第一次出的钱数+第二次出的钱数=1对张强买的香蕉的千克数,应分情况讨论:当0x20,y40;当0x20,y40当20x3时,则3y2【详解】设张强第一次购买香蕉xkg,第二次购买香蕉ykg,由题意可得0x3则当0x20,y40,则题意可得解得当0x20,y40时,由题意可得解得(不合题意,舍去)当20x3时,则3y2,此时张强用去的款项为5x+5
20、y=5(x+y)=550=301(不合题意,舍去);当20x40 y40时,总质量将大于60kg,不符合题意,答:张强第一次购买香蕉14kg,第二次购买香蕉36kg【点睛】本题主要考查学生分类讨论的思想找到两个基本的等量关系后,应根据讨论的千克数找到相应的价格进行作答23、见解析.【解析】由“SAS”可证ABCDEC,可得BCCE,即可得结论【详解】证明:ABDE,AD,ACBDCE90ABCDEC(SAS)BCCE,ACAE+CEACAE+BC【点睛】本题考查了全等三角形的判定和性质,熟练运用全等三角形的性质是本题的关键24、 (1)1;(2)发令后第37秒两班运动员在275米处第一次并列【
21、解析】(1)直接根据图象上点横坐标可知道最快的是第1接力棒的运动员用了12秒跑完100米;(2)分别利用待定系数法把图象相交的部分,一班,二班的直线解析式求出来后,联立成方程组求交点坐标即可【详解】(1)从函数图象上可看出初三二班跑得最快的是第1接力棒的运动员用了12秒跑完100米;(2)设在图象相交的部分,设一班的直线为y1kx+b,把点(28,200),(40,300)代入得:解得:k,b,即y1x,二班的为y2kx+b,把点(25,200),(41,300),代入得:解得:k,b,即y2x+联立方程组,解得:,所以发令后第37秒两班运动员在275米处第一次并列【点睛】本题考查了利用一次函数的模型解决实际问题的能力和读图能力要先根据题意列出函数关系式,再代数求值解题的关键是要分析题意根据实际意义准确的列出解析式,再把对应值代入求解,并会根据图示得出所需要的信息要掌握利用函数解析式联立成方程组求交点坐标的方法