《山东省德州市第五中学2023年中考联考数学试题含解析.doc》由会员分享,可在线阅读,更多相关《山东省德州市第五中学2023年中考联考数学试题含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是( )
2、ABCD2已知二次函数的图象如图所示,则下列结论:ac0;a-b+c0;当时,;,其中错误的结论有ABCD3用6个相同的小正方体搭成一个几何体,若它的俯视图如图所示,则它的主视图不可能是()ABCD42017年,全国参加汉语考试的人数约为6500000,将6500000用科学记数法表示为()A6.5105 B6.5106 C6.5107 D651055某公园有A、B、C、D四个入口,每个游客都是随机从一个入口进入公园,则甲、乙两位游客恰好从同一个入口进入公园的概率是()ABCD6如图,在ABC中,C=90,点D在AC上,DEAB,若CDE=165,则B的度数为()A15B55C65D757如图
3、,PA切O于点A,PO交O于点B,点C是O优弧弧AB上一点,连接AC、BC,如果P=C,O的半径为1,则劣弧弧AB的长为()ABCD8下列运算正确的是()A(2a)3=6a3B3a24a3=12a5C3a(2a)=6a3a2D2a3a2=2a9下列图形中,既是中心对称图形,又是轴对称图形的是( )ABCD10下列实数中,无理数是()A3.14B1.01001CD11如图,在ABC中,BC=8,AB的中垂线交BC于D,AC的中垂线交BC于E,则ADE的周长等于()A8B4C12D1612股市有风险,投资需谨慎截至今年五月底,我国股市开户总数约95000000,正向1亿挺进,95000000用科学
4、计数法表示为( )A9.5106B9.5107C9.5108D9.5109二、填空题:(本大题共6个小题,每小题4分,共24分)13如果m,n互为相反数,那么|m+n2016|=_14如果一个矩形的面积是40,两条对角线夹角的正切值是,那么它的一条对角线长是_15二次根式中字母x的取值范围是_16分解因式:a2b+4ab+4b=_17如图,正方形ABCD的边长为3,点E,F分别在边BCCD上,BE=CF=1,小球P从点E出发沿直线向点F运动,完成第1次与边的碰撞,每当碰到正方形的边时反弹,反弹时反射角等于入射角,则小球P与正方形的边第2次碰撞到_边上,小球P与正方形的边完成第5次碰撞所经过的路
5、程为_18如图的三角形纸片中,AB=8cm,BC=6cm,AC=5cm.沿过点B的直线折叠三角形,使点C落在AB边的点E处,折痕为BD.则AED的周长为_cm.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,在平面直角坐标系xOy中,每个小正方形的边长都为1,和的顶点都在格点上,回答下列问题:可以看作是经过若干次图形的变化平移、轴对称、旋转得到的,写出一种由得到的过程:_;画出绕点B逆时针旋转的图形;在中,点C所形成的路径的长度为_20(6分)请你仅用无刻度的直尺在下面的图中作出ABC 的边 AB 上的高 CD如图,以等边三角形 ABC 的边
6、AB 为直径的圆,与另两边 BC、AC 分别交于点 E、F如图,以钝角三角形 ABC 的一短边 AB 为直径的圆,与最长的边 AC 相交于点 E21(6分)小丽和哥哥小明分别从家和图书馆同时出发,沿同一条路相向而行,小丽开始跑步,遇到哥哥后改为步行,到达图书馆恰好用35分钟,小明匀速骑自行车直接回家,骑行10分钟后遇到了妹妺,再继续骑行5分钟,到家两人距离家的路程y(m)与各自离开出发的时间x(min)之间的函数图象如图所示:(1)求两人相遇时小明离家的距离;(2)求小丽离距离图书馆500m时所用的时间22(8分)如图,AB是O的直径,弦CDAB,垂足为H,连结AC,过上一点E作EGAC交CD
7、的延长线于点G,连结AE交CD于点F,且EG=FG,连结CE(1)求证:G=CEF;(2)求证:EG是O的切线;(3)延长AB交GE的延长线于点M,若tanG =,AH=3,求EM的值23(8分)如图,分别与相切于点,点在上,且,垂足为求证:;若的半径,求的长24(10分)如图,A(4,3)是反比例函数y=在第一象限图象上一点,连接OA,过A作ABx轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=的图象于点P求反比例函数y=的表达式;求点B的坐标;求OAP的面积25(10分)某中学采用随机的方式对学生掌握安全知识的情况进行测评,并按成绩高低分成优、良、中、差四个等级进行统计,绘制了
8、下面两幅尚不完整的统计图请根据有关信息解答: (1)接受测评的学生共有_人,扇形统计图中“优”部分所对应扇形的圆心角为_,并补全条形统计图;(2)若该校共有学生1200人,请估计该校对安全知识达到“良”程度的人数;(3)测评成绩前五名的学生恰好3个女生和2个男生,现从中随机抽取2人参加市安全知识竞赛,请用树状图或列表法求出抽到1个男生和1个女生的概率26(12分)某校师生到距学校20千米的公路旁植树,甲班师生骑自行车先走,45分钟后,乙班师生乘汽车出发,结果两班师生同时到达,已知汽车的速度是自行车速度的2.5倍,求两种车的速度各是多少?27(12分)甲、乙、丙3名学生各自随机选择到A、B2个书
9、店购书(1)求甲、乙2名学生在不同书店购书的概率;(2)求甲、乙、丙3名学生在同一书店购书的概率参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】袋中一共7个球,摸到的球有7种可能,而且机会均等,其中有3个红球,因此摸到红球的概率为,故选B.2、C【解析】根据图象的开口方向,可得a的范围,根据图象与y轴的交点,可得c的范围,根据有理数的乘法,可得答案;根据自变量为-1时函数值,可得答案;根据观察函数图象的纵坐标,可得答案;根据对称轴,整理可得答案【详解】图象开口向下,得a0,图象与y轴的交点在x轴的上方,得c0,ac,
10、故错误;由图象,得x=-1时,y0,即a-b+c0,故正确;由图象,得图象与y轴的交点在x轴的上方,即当x0时,y有大于零的部分,故错误;由对称轴,得x=-=1,解得b=-2a,2a+b=0故正确;故选D【点睛】考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小当a0时,抛物线向上开口;当a0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左; 当a与b异号时,对称轴在y轴右常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c)抛物线与x轴交点个数由判别式确定:=b2-4ac0时,抛物线与x轴有2个交点;=b2-4ac=0时
11、,抛物线与x轴有1个交点;=b2-4ac0时,抛物线与x轴没有交点3、D【解析】分析:根据主视图和俯视图之间的关系可以得出答案详解: 主视图和俯视图的长要相等, 只有D选项中的长和俯视图不相等,故选D点睛:本题主要考查的就是三视图的画法,属于基础题型三视图的画法为:主视图和俯视图的长要相等;主视图和左视图的高要相等;左视图和俯视图的宽要相等4、B【解析】科学记数法的表示形式为a10n的形式,其中1|a|10时,n是正数;当原数的绝对值1时,n是负数【详解】将6500000用科学记数法表示为:6.5106.故答案选B.【点睛】本题考查了科学计数法,解题的关键是熟练的掌握科学计数法的表示形式.5、
12、B【解析】画树状图列出所有等可能结果,从中确定出甲、乙两位游客恰好从同一个入口进入公园的结果数,再利用概率公式计算可得【详解】画树状图如下:由树状图知共有16种等可能结果,其中甲、乙两位游客恰好从同一个入口进入公园的结果有4种,所以甲、乙两位游客恰好从同一个入口进入公园的概率为=,故选B【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率6、D【解析】根据邻补角定义可得ADE=15,由平行线的性质可得A=ADE=15,再根据三角形内角和定理即可求得B=75【详解】解:CDE=165,ADE=15
13、,DEAB,A=ADE=15,B=180CA=1809015=75,故选D【点睛】本题考查了平行线的性质、三角形内角和定理等,熟练掌握平行线的性质以及三角形内角和定理是解题的关键7、A【解析】利用切线的性质得OAP=90,再利用圆周角定理得到C=O,加上P=C可计算写出O=60,然后根据弧长公式计算劣弧的长【详解】解:PA切O于点A,OAPA,OAP=90,C=O,P=C,O=2P,而O+P=90,O=60,劣弧AB的长=故选:A【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径也考查了圆周角定理和弧长公式8、B【解析】先根据同底数幂的乘法法则进行运算即可。【详解】A.;故本选项错误;
14、B. 3a24a3=12a5; 故本选项正确;C.;故本选项错误;D. 不是同类项不能合并; 故本选项错误;故选B.【点睛】先根据同底数幂的乘法法则, 幂的乘方, 积的乘方, 合并同类项分别求出每个式子的值, 再判断即可.9、C【解析】根据中心对称图形和轴对称图形对各选项分析判断即可得解【详解】A、不是轴对称图形,是中心对称图形,故本选项错误;B、不是中心对称图形,是轴对称图形,故本选项错误;C、既是中心对称图形,又是轴对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误故选C【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可
15、重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合10、C【解析】先把能化简的数化简,然后根据无理数的定义逐一判断即可得【详解】A、3.14是有理数;B、1.01001是有理数;C、是无理数;D、是分数,为有理数;故选C【点睛】本题主要考查无理数的定义,属于简单题11、A【解析】AB的中垂线交BC于D,AC的中垂线交BC于E,DA=DB,EA=EC,则ADE的周长=AD+DE+AE=BD+DE+EC=BC=8,故选A12、B【解析】试题分析: 15000000=152故选B考点:科学记数法表示较大的数二、填空题:(本大题共6个小题,每小题4分,共24分)13、1【解析】试题分析:先用
16、相反数的意义确定出m+n=0,从而求出|m+n1|,m,n互为相反数,m+n=0,|m+n1|=|1|=1;故答案为1考点:1.绝对值的意义;2.相反数的性质.14、1【解析】如图,作BHAC于H由四边形ABCD是矩形,推出OA=OC=OD=OB,设OA=OC=OD=OB=5a,由tanBOH,可得BH=4a,OH=3a,由题意:21a4a=40,求出a即可解决问题【详解】如图,作BHAC于H四边形ABCD是矩形,OA=OC=OD=OB,设OA=OC=OD=OB=5atanBOH,BH=4a,OH=3a,由题意:21a4a=40,a=1,AC=1故答案为:1【点睛】本题考查了矩形的性质、解直角
17、三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题15、x1【解析】二次根式有意义的条件就是被开方数是非负数,即可求解【详解】根据题意得:1x0,解得x1故答案为:x1【点睛】主要考查了二次根式的意义和性质性质:二次根式中的被开方数必须是非负数,否则二次根式无意义16、b(a+2)2【解析】根据公式法和提公因式法综合运算即可【详解】a2b+4ab+4b=.故本题正确答案为.【点睛】本题主要考查因式分解.17、AB, 【解析】根据已知中的点E,F的位置,可知入射角的正切值为,通过相似三角形,来确定反射后的点的位置再由勾股定理就可以求出小球第5次碰撞
18、所经过路程的总长度【详解】根据已知中的点E,F的位置,可知入射角的正切值为,第一次碰撞点为F,在反射的过程中,根据入射角等于反射角及平行关系的三角形的相似可得,第二次碰撞点为G,在AB上,且AG=AB,第三次碰撞点为H,在AD上,且AH=AD,第四次碰撞点为M,在DC上,且DM=DC,第五次碰撞点为N,在AB上,且BN=AB,第六次回到E点,BE=BC.由勾股定理可以得出EF=,FG= ,GH= ,HM=,MN= ,NE= ,故小球第5次经过的路程为:+ + + = ,故答案为AB, .【点睛】本题考查了正方形与轴对称的性质,解题的关键是熟练的掌握正方形与轴对称的性质.18、7【解析】根据翻折
19、变换的性质可得BE=BC,DE=CD,然后求出AE,再求出ADE的周长=AC+AE【详解】折叠这个三角形点C落在AB边上的点E处,折痕为BD,BE=BC,DE=CD,AE=AB-BE=AB-BC=8-6=2cm,ADE的周长=AD+DE+AE,=AD+CD+AE,=AC+AE,=5+2,=7cm故答案为:7.【点睛】本题考查了翻折变换的性质,翻折前后对应边相等,对应角相等三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)先沿y轴翻折,再向右平移1个单位,向下平移3个单位;先向左平移1个单位,向下平移3个单位,再沿y轴翻折;(2)见解析;(3)【解析】(
20、1)ABC先沿y轴翻折,再向右平移1个单位,向下平移3个单位;或先向左平移1个单位,向下平移3个单位,再沿y轴翻折,即可得到DEF;按照旋转中心、旋转角度以及旋转方向,即可得到ABC绕点B逆时针旋转 的图形 ;依据点C所形成的路径为扇形的弧,利用弧长计算公式进行计算即可【详解】解:(1)答案不唯一例如:先沿y轴翻折,再向右平移1个单位,向下平移3个单位;先向左平移1个单位,向下平移3个单位,再沿y轴翻折(2)分别将点C、A绕点B逆时针旋转得到点 、 ,如图所示,即为所求;(3)点C所形成的路径的长为:故答案为(1)先沿y轴翻折,再向右平移1个单位,向下平移3个单位;先向左平移1个单位,向下平移
21、3个单位,再沿y轴翻折;(2)见解析;(3)【点睛】本题考查坐标与图形变化旋转,平移,对称,解题时需要注意:平移的距离等于对应点连线的长度,对称轴为对应点连线的垂直平分线,旋转角为对应点与旋转中心连线的夹角的大小20、(1)详见解析;(2)详见解析.【解析】(1)连接AE、BF,找到ABC的高线的交点,据此可得CD;(2)延长CB交圆于点F,延长AF、EB交于点G,连接CG,延长AB交CG于点D,据此可得【详解】(1)如图所示,CD 即为所求;(2)如图,CD 即为所求【点睛】本题主要考查作图-基本作图,解题的关键熟练掌握圆周角定理和三角形的三条高线交于一点的性质21、(1)两人相遇时小明离家
22、的距离为1500米;(2)小丽离距离图书馆500m时所用的时间为分【解析】(1)根据题意得出小明的速度,进而得出得出小明离家的距离;(2)由(1)的结论得出小丽步行的速度,再列方程解答即可【详解】解:(1)根据题意可得小明的速度为:4500(10+5)300(米/分),30051500(米),两人相遇时小明离家的距离为1500米;(2)小丽步行的速度为:(45001500)(3510)120(米/分),设小丽离距离图书馆500m时所用的时间为x分,根据题意得,1500+120(x10)4500500,解得x答:小丽离距离图书馆500m时所用的时间为分【点睛】本题由函数图像获取信息,以及一元一次
23、方程的应用,由函数图像正确获取信息是解答本题的关键22、(1)证明见解析;(2)证明见解析;(3). 【解析】试题分析:(1)由ACEG,推出G=ACG,由ABCD推出,推出CEF=ACD,推出G=CEF,由此即可证明;(2)欲证明EG是O的切线只要证明EGOE即可;(3)连接OC设O的半径为r在RtOCH中,利用勾股定理求出r,证明AHCMEO,可得,由此即可解决问题;试题解析:(1)证明:如图1ACEG,G=ACG,ABCD,CEF=ACD,G=CEF,ECF=ECG,ECFGCE(2)证明:如图2中,连接OEGF=GE,GFE=GEF=AFH,OA=OE,OAE=OEA,AFH+FAH=
24、90,GEF+AEO=90,GEO=90,GEOE,EG是O的切线(3)解:如图3中,连接OC设O的半径为r在RtAHC中,tanACH=tanG=,AH=,HC=,在RtHOC中,OC=r,OH=r,HC=,r=,GMAC,CAH=M,OEM=AHC,AHCMEO,EM=点睛:本题考查圆综合题、垂径定理、相似三角形的判定和性质、锐角三角函数、勾股定理等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,正确寻找相似三角形,构建方程解决问题吗,属于中考压轴题23、(1)见解析(2)5【解析】解:(1)证明:如图,连接,则,四边形是平行四边形(2)连接,则,设,则在中,有即24、(1
25、)反比例函数解析式为y=;(2)点B的坐标为(9,3);(3)OAP的面积=1【解析】(1)将点A的坐标代入解析式求解可得;(2)利用勾股定理求得AB=OA=1,由ABx轴即可得点B的坐标;(3)先根据点B坐标得出OB所在直线解析式,从而求得直线与双曲线交点P的坐标,再利用割补法求解可得【详解】(1)将点A(4,3)代入y=,得:k=12,则反比例函数解析式为y=;(2)如图,过点A作ACx轴于点C,则OC=4、AC=3,OA=1,ABx轴,且AB=OA=1,点B的坐标为(9,3);(3)点B坐标为(9,3),OB所在直线解析式为y=x,由可得点P坐标为(6,2),(负值舍去),过点P作PDx
26、轴,延长DP交AB于点E,则点E坐标为(6,3),AE=2、PE=1、PD=2,则OAP的面积=(2+6)36221=1【点睛】本题考查了反比例函数与几何图形综合,熟练掌握反比例函数图象上点的坐标特征、正确添加辅助线是解题的关键.25、 (1)80,135,条形统计图见解析;(2)825人;(3)图表见解析,(抽到1男1女) 【解析】试题分析:(1)、根据“中”的人数和百分比得出总人数,然后求出优所占的百分比,得出圆心角的度数;(2)、根据题意得出“良”和“优”两种所占的百分比,从而得出全校的总数;(3)、根据题意利用列表法或者树状图法画出所有可能出现的情况,然后根据概率的计算法则求出概率.试
27、题解析:(1)80,135; 条形统计图如图所示(2)该校对安全知识达到“良”程度的人数:(人)(3)解法一:列表如下:所有等可能的结果为20种,其中抽到一男一女的为12种,所以(抽到1男1女) 女1女2女3男1男2女1-女2女1女3女1男1女1男2女1女2女1女2-女3女2男1女2男2女2女3女1女3女2女3-男1女3男2女3男1女1男1女2男1女3男1-男2男1男2女1男2女2男2女3男2男1男2-解法二:画树状图如下:所有等可能的结果为20种,其中抽到一男一女的为12种,所以(抽到1男1女) 26、自行车速度为16千米/小时,汽车速度为40千米/小时.【解析】设自行车速度为x千米/小时,
28、则汽车速度为2.5x千米/小时,根据甲班师生骑自行车先走,45分钟后,乙班师生乘汽车出发,结果同时到达,即可列方程求解.【详解】设自行车速度为x千米/小时,则汽车速度为2.5x千米/小时,由题意得,解得x=16,经检验x=16适合题意,2.5x=40,答:自行车速度为16千米/小时,汽车速度为40千米/小时.27、(1)P=;(2)P=.【解析】试题分析:依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率试题解析:(1)甲、乙两名学生到A、B两个书店购书的所有可能结果有:从树状图可以看出,这两名学生到不同书店购书的可能结果有AB、BA共2种,所以甲乙两名学生在不同书店购书的概率P(甲、乙2名学生在不同书店购书)=; (2)甲、乙、丙三名学生AB两个书店购书的所有可能结果有:从树状图可以看出,这三名学生到同一书店购书的可能结果有AAA、BBB共2种,所以甲乙丙到同一书店购书的概率P(甲、乙、丙3名学生在同一书店购书)=.点睛:本题考查的是用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件用到的知识点为:概率=所求情况数与总情况数之比