山东省济南市重点中学2022-2023学年高考数学倒计时模拟卷含解析.doc

上传人:lil****205 文档编号:87999389 上传时间:2023-04-19 格式:DOC 页数:18 大小:1.86MB
返回 下载 相关 举报
山东省济南市重点中学2022-2023学年高考数学倒计时模拟卷含解析.doc_第1页
第1页 / 共18页
山东省济南市重点中学2022-2023学年高考数学倒计时模拟卷含解析.doc_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《山东省济南市重点中学2022-2023学年高考数学倒计时模拟卷含解析.doc》由会员分享,可在线阅读,更多相关《山东省济南市重点中学2022-2023学年高考数学倒计时模拟卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数的图象向左平移个单位后得到函数的图象,则的最小值为( )ABCD2过抛物线的焦点作直线与抛物线在第一象限交于点A,与准线在第三象限交于点B,过点作准线的垂线,垂足为.若,则( )AB

2、CD3中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是ABCD4如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积( )ABCD5设,则的值为( )ABCD6已知全集,集合,则=( )ABCD7函数的图象大致是( )ABCD8已知函数与的图象有一个横坐标为的交点,若函数的图象的纵坐标不变,横坐标变为原来的倍后,得到的函数在有且仅有5个零点,则的取值范围是( )ABCD9,则与位置关系是 ()A平行B异面C相交D平行或异面

3、或相交102019年10月1日,中华人民共和国成立70周年,举国同庆.将2,0,1,9,10这5个数字按照任意次序排成一行,拼成一个6位数,则产生的不同的6位数的个数为A96B84C120D36011的展开式中有理项有( )A项B项C项D项12函数在的图象大致为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13如图,为测量出高,选择和另一座山的山顶为测量观测点,从点测得点的仰角,点的仰角以及;从点测得已知山高,则山高_14在一块土地上种植某种农作物,连续5年的产量(单位:吨)分别为9.4,9.7,9.8,10.3,10.8.则该农作物的年平均产量是_吨.15已知函数则_.16已

4、知函数,则过原点且与曲线相切的直线方程为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数.()当时,求不等式的解集;()若不等式对任意实数恒成立,求实数的取值范围.18(12分)已知函数(1)求函数在处的切线方程(2)设函数,对于任意,恒成立,求的取值范围.19(12分)在极坐标系中,已知曲线C的方程为(),直线l的方程为.设直线l与曲线C相交于A,B两点,且,求r的值.20(12分)已知椭圆的离心率为,直线过椭圆的右焦点,过的直线交椭圆于两点(均异于左、右顶点).(1)求椭圆的方程;(2)已知直线,为椭圆的右顶点. 若直线交于点,直线交于点,试判断是否

5、为定值,若是,求出定值;若不是,说明理由.21(12分)如图,己知圆和双曲线,记与轴正半轴、轴负半轴的公共点分别为、,又记与在第一、第四象限的公共点分别为、.(1)若,且恰为的左焦点,求的两条渐近线的方程;(2)若,且,求实数的值;(3)若恰为的左焦点,求证:在轴上不存在这样的点,使得.22(10分)已知是圆:的直径,动圆过,两点,且与直线相切.(1)若直线的方程为,求的方程;(2)在轴上是否存在一个定点,使得以为直径的圆恰好与轴相切?若存在,求出点的坐标;若不存在,请说明理由.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A

6、【解析】首先求得平移后的函数,再根据求的最小值.【详解】根据题意,的图象向左平移个单位后,所得图象对应的函数,所以,所以又,所以的最小值为故选:A【点睛】本题考查三角函数的图象变换,诱导公式,意在考查平移变换,属于基础题型.2、C【解析】需结合抛物线第一定义和图形,得为等腰三角形,设准线与轴的交点为,过点作,再由三角函数定义和几何关系分别表示转化出,结合比值与正切二倍角公式化简即可【详解】如图,设准线与轴的交点为,过点作.由抛物线定义知,所以,所以.故选:C【点睛】本题考查抛物线的几何性质,三角函数的性质,数形结合思想,转化与化归思想,属于中档题3、A【解析】详解:由题意知,题干中所给的是榫头

7、,是凸出的几何体,求得是卯眼的俯视图,卯眼是凹进去的,即俯视图中应有一不可见的长方形,且俯视图应为对称图形故俯视图为故选A.点睛:本题主要考查空间几何体的三视图,考查学生的空间想象能力,属于基础题。4、C【解析】画出几何体的直观图,利用三视图的数据求解几何体的表面积即可【详解】解:几何体的直观图如图,是正方体的一部分,PABC,正方体的棱长为2,该几何体的表面积:故选C【点睛】本题考查三视图求解几何体的直观图的表面积,判断几何体的形状是解题的关键5、D【解析】利用倍角公式求得的值,利用诱导公式求得的值,利用同角三角函数关系式求得的值,进而求得的值,最后利用正切差角公式求得结果.【详解】,故选:

8、D.【点睛】该题考查的是有关三角函数求值问题,涉及到的知识点有诱导公式,正切倍角公式,同角三角函数关系式,正切差角公式,属于基础题目.6、D【解析】先计算集合,再计算,最后计算【详解】解:,故选:【点睛】本题主要考查了集合的交,补混合运算,注意分清集合间的关系,属于基础题7、A【解析】根据复合函数的单调性,同增异减以及采用排除法,可得结果.【详解】当时,由在递增,所以在递增又是增函数,所以在递增,故排除B、C当时,若,则所以在递减,而是增函数所以在递减,所以A正确,D错误故选:A【点睛】本题考查具体函数的大致图象的判断,关键在于对复合函数单调性的理解,记住常用的结论:增+增=增,增-减=增,减

9、+减=减,复合函数单调性同增异减,属中档题.8、A【解析】根据题意,求出,所以,根据三角函数图像平移伸缩,即可求出的取值范围.【详解】已知与的图象有一个横坐标为的交点,则,若函数图象的纵坐标不变,横坐标变为原来的倍, 则,所以当时,在有且仅有5个零点, ,.故选:A.【点睛】本题考查三角函数图象的性质、三角函数的平移伸缩以及零点个数问题,考查转化思想和计算能力.9、D【解析】结合图(1),(2),(3)所示的情况,可得a与b的关系分别是平行、异面或相交选D10、B【解析】2,0,1,9,10按照任意次序排成一行,得所有不以0开头的排列数共个,其中含有2个10的排列数共个,所以产生的不同的6位数

10、的个数为.故选B11、B【解析】由二项展开式定理求出通项,求出的指数为整数时的个数,即可求解.【详解】,当,时,为有理项,共项.故选:B.【点睛】本题考查二项展开式项的特征,熟练掌握二项展开式的通项公式是解题的关键,属于基础题.12、B【解析】先考虑奇偶性,再考虑特殊值,用排除法即可得到正确答案.【详解】是奇函数,排除C,D;,排除A.故选:B.【点睛】本题考查函数图象的判断,属于常考题.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】试题分析:在中,,,在中,由正弦定理可得即解得,在中,故答案为1考点:正弦定理的应用14、10【解析】根据已知数据直接计算即得.【详解】由题得,

11、.故答案为:10【点睛】本题考查求平均数,是基础题.15、【解析】先由解析式求得(2),再求(2)【详解】(2),所以(2),故答案为:【点睛】本题考查对数、指数的运算性质,分段函数求值关键是“对号入座”,属于容易题16、【解析】设切点坐标为,利用导数求出曲线在切点的切线方程,将原点代入切线方程,求出的值,于此可得出所求的切线方程【详解】设切点坐标为,则曲线在点处的切线方程为,由于该直线过原点,则,得,因此,则过原点且与曲线相切的直线方程为,故答案为【点睛】本题考查导数的几何意义,考查过点作函数图象的切线方程,求解思路是:(1)先设切点坐标,并利用导数求出切线方程;(2)将所过点的坐标代入切线

12、方程,求出参数的值,可得出切点的坐标;(3)将参数的值代入切线方程,可得出切线的方程三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、();().【解析】试题分析:()分三种情况讨论,分别求解不等式组,然后求并集即可得不等式的解集;()根据绝对值不等式的性质可得,不等式对任意实数恒成立,等价于,解不等式即可求的取值范围.试题解析:()当时,即,当时,得,所以;当时,得,即,所以;当时,得成立,所以.故不等式的解集为.()因为,由题意得,则,解得,故的取值范围是.18、(1);(2)【解析】(1)求出,即可求出切线的点斜式方程,整理即可;(2)的取值范围满足,求出,当时求出,的

13、解,得到单调区间,极小值最小值即可.【详解】(1)由于,此时切点坐标为所以切线方程为. (2)由已知,故.由于,故,设由于在单调递增同时时,时,故存在使得且当时,当时,所以当时,当时,所以当时,取得极小值,也是最小值,故由于,所以,.【点睛】本题考查导数的几何意义、不等式恒成立问题,应用导数求最值是解题的关键,考查逻辑推理、数学计算能力,属于中档题.19、【解析】先将曲线C和直线l的极坐标方程化为直角坐标方程,可得圆心到直线的距离,再由勾股定理,计算即得.【详解】以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,可得曲线C:()的直角坐标方程为,表示以原点为圆心,半径为r的圆.由直线l的

14、方程,化简得,则直线l的直角坐标方程方程为.记圆心到直线l的距离为d,则,又,即,所以.【点睛】本题考查曲线和直线的极坐标方程化为直角坐标方程,是基础题.20、(1)(2)定值为0.【解析】(1)根据直线方程求焦点坐标,即得c,再根据离心率得,(2)先设直线方程以及各点坐标,化简,再联立直线方程与椭圆方程,利用韦达定理代入化简得结果.【详解】(1)因为直线过椭圆的右焦点,所以,因为离心率为,所以,(2),设直线,则因此由得,所以,因此即【点睛】本题考查椭圆方程以及直线与椭圆位置关系,考查综合分析求解能力,属中档题.21、(1);(2);(2)见解析【解析】(1)由圆的方程求出点坐标,得双曲线的

15、,再计算出后可得渐近线方程;(2)设,由圆方程与双曲线方程联立,消去后整理,可得,由先求出,回代后求得坐标,计算;(3)由已知得,设,由圆方程与双曲线方程联立,消去后整理,可解得,求出,从而可得,由,可知满足要求的点不存在【详解】(1)由题意圆方程为,令得,即,渐近线方程为(2)由(1)圆方程为,设,由得,(*),所以,即,解得,方程(*)为,即,代入双曲线方程得,在第一、四象限,(3)由题意,设由得:,由得,解得,所以,当且仅当三点共线时,等号成立,轴上不存在点,使得【点睛】本题考查求渐近线方程,考查圆与双曲线相交问题考查向量的加法运算,本题对学生的运算求解能力要求较高,解题时都是直接求出交

16、点坐标难度较大,属于困难题22、(1)或. (2)存在,;【解析】(1)根据动圆过,两点,可得圆心在的垂直平分线上,由直线的方程为,可知在直线上;设,由动圆与直线相切可得动圆的半径为;又由,及垂径定理即可确定的值,进而确定圆的方程.(2)方法一:设,可得圆的半径为,根据,可得方程为并化简可得的轨迹方程为.设,可得的中点,进而由两点间距离公式表示出半径,表示出到轴的距离,代入化简即可求得的值,进而确定所过定点的坐标;方法二:同上可得的轨迹方程为,由抛物线定义可求得,表示出线段的中点的坐标,根据到轴的距离可得等量关系,进而确定所过定点的坐标.【详解】(1)因为过点,所以圆心在的垂直平分线上.由已知

17、的方程为,且,关于于坐标原点对称,所以在直线上,故可设.因为与直线相切,所以的半径为.由已知得,又,故可得,解得或.故的半径或,所以的方程为或.(2)法一:设,由已知得的半径为,.由于,故可得,化简得的轨迹方程为.设,则得,的中点,则以为直径的圆的半径为:,到轴的距离为,令,化简得,即,故当时,式恒成立.所以存在定点,使得以为直径的圆与轴相切.法二:设,由已知得的半径为,.由于,故可得,化简得的轨迹方程为.设,因为抛物线的焦点坐标为,点在抛物线上,所以,线段的中点的坐标为,则到轴的距离为,而,故以为径的圆与轴切,所以当点与重合时,符合题意,所以存在定点,使得以为直径的圆与轴相切.【点睛】本题考查了圆的标准方程求法,动点轨迹方程的求法,抛物线定义及定点问题的解法综合应用,属于难题.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁