《山东省枣庄市薛城区奚仲中学2023届中考数学押题试卷含解析.doc》由会员分享,可在线阅读,更多相关《山东省枣庄市薛城区奚仲中学2023届中考数学押题试卷含解析.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1在同一平面直角坐标系中,一次函数ykx2k和二次函数ykx2+2x4(k是常数且k0)的图象可能是()ABCD2已知二次函数yax2+bx+c(a0)的图象如图所示,则下列结论: abc0; 2ab0; b24ac0; 9a+3b+c0; c+8a0.正确的结论有().A1个B2个C3
2、个D4个3如图,在正方形ABCD中,AB,P为对角线AC上的动点,PQAC交折线ADC于点Q,设APx,APQ的面积为y,则y与x的函数图象正确的是()ABCD4中国在第二十三届冬奥会闭幕式上奉献了2022相约北京的文艺表演,会后表演视频在网络上推出,即刻转发量就超过810000这个数用科学记数法表示为()A8.1106B8.1105C81105D811045已知一组数据:12,5,9,5,14,下列说法不正确的是( )A平均数是9B中位数是9C众数是5D极差是56若实数 a,b 满足|a|b|,则与实数 a,b 对应的点在数轴上的位置可以是( )ABCD7将三粒均匀的分别标有,的正六面体骰子
3、同时掷出,朝上一面上的数字分别为,则,正好是直角三角形三边长的概率是()ABCD8如图,已知是的角平分线,是的垂直平分线,则的长为( )A6B5C4D9下列图标中,是中心对称图形的是()ABCD10已知函数,则使y=k成立的x值恰好有三个,则k的值为( )A0B1C2D3二、填空题(共7小题,每小题3分,满分21分)11如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则1+2=_度12若反比例函数y=的图象位于第一、三象限,则正整数k的值是_13分式有意义时,x的取值范围是_14如图,已知,D、E分别是边BA、CA延长线上的点,且如果,那么AE的长为_15圆柱的底面半径为1,母线长为2,
4、则它的侧面积为_(结果保留)16分解因式:a3a= 17已知边长为5的菱形中,对角线长为6,点在对角线上且,则的长为_三、解答题(共7小题,满分69分)18(10分)图1是一商场的推拉门,已知门的宽度米,且两扇门的大小相同(即),将左边的门绕门轴向里面旋转,将右边的门绕门轴向外面旋转,其示意图如图2,求此时与之间的距离(结果保留一位小数).(参考数据:,)19(5分) “食品安全”受到全社会的广泛关注,济南市某中学对部分学生就食品安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学
5、生共有 人,扇形统计图中“基本了解”部分所对应扇形的圆心角为 ;(2)请补全条形统计图;(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对食品安全知识达到“了解”和“基本了解”程度的总人数;(4)若从对食品安全知识达到“了解”程度的2个女生和2个男生中随机抽取2人参加食品安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率20(8分)先化简,再求值:,其中x=121(10分)如图,AB为半圆O的直径,AC是O的一条弦,D为的中点,作DEAC,交AB的延长线于点F,连接DA求证:EF为半圆O的切线;若DADF6,求阴影区域的面积(结果保留根号和)22(10分)
6、如图,在平面直角坐标系中,将坐标原点O沿x轴向左平移2个单位长度得到点A,过点A作y轴的平行线交反比例函数的图象于点B,AB=求反比例函数的解析式;若P(,)、Q(,)是该反比例函数图象上的两点,且时,指出点P、Q各位于哪个象限?并简要说明理由23(12分)许昌文峰塔又称文明寺塔,为全国重点文物保护单位,某校初三数学兴趣小组的同学想要利用学过的知识测量文峰塔的高度,他们找来了测角仪和卷尺,在点A处测得塔顶C的仰角为30,向塔的方向移动60米后到达点B,再次测得塔顶C的仰角为60,试通过计算求出文峰塔的高度CD(结果保留两位小数)24(14分)观察与思考:阅读下列材料,并解决后面的问题在锐角AB
7、C中,A、B、C的对边分别是a、b、c,过A作ADBC于D(如图(1)),则sinB=,sinC=,即ADcsinB,ADbsinC,于是csinBbsinC,即,同理有:,所以即:在一个三角形中,各边和它所对角的正弦的比相等在锐角三角形中,若已知三个元素(至少有一条边),运用上述结论和有关定理就可以求出其余三个未知元素根据上述材料,完成下列各题(1)如图(2),ABC中,B45,C75,BC60,则A ;AC ;(2)自从去年日本政府自主自导“钓鱼岛国有化”闹剧以来,我国政府灵活应对,现如今已对钓鱼岛执行常态化巡逻某次巡逻中,如图(3),我渔政204船在C处测得A在我渔政船的北偏西30的方向
8、上,随后以40海里/时的速度按北偏东30的方向航行,半小时后到达B处,此时又测得钓鱼岛A在的北偏西75的方向上,求此时渔政204船距钓鱼岛A的距离AB(结果精确到0.01,2.449)参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】根据一次函数与二次函数的图象的性质,求出k的取值范围,再逐项判断即可【详解】解:A、由一次函数图象可知,k0,k0,二次函数的图象开口应该向下,故A选项不合题意;B、由一次函数图象可知,k0,k0,-=0,二次函数的图象开口向下,且对称轴在x轴的正半轴,故B选项不合题意;C、由一次函数图象可知,k0,k0,-=0,二次函数的图象开口
9、向上,且对称轴在x轴的负半轴,一次函数必经过点(2,0),当x2时,二次函数值y4k0,故C选项符合题意;D、由一次函数图象可知,k0,k0,-=0,二次函数的图象开口向上,且对称轴在x轴的负半轴,一次函数必经过点(2,0),当x2时,二次函数值y4k0,故D选项不合题意;故选:C【点睛】本题考查一次函数与二次函数的图象和性质,解决此题的关键是熟记图象的性质,此外,还要主要二次函数的对称轴、两图象的交点的位置等2、C【解析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断【详解】解:抛物线开口向下,得
10、:a0;抛物线的对称轴为x=-=1,则b=-2a,2a+b=0,b=-2a,故b0;抛物线交y轴于正半轴,得:c0.abc0, 正确;2a+b=0,正确;由图知:抛物线与x轴有两个不同的交点,则=b2-4ac0,故错误;由对称性可知,抛物线与x轴的正半轴的交点横坐标是x=3,所以当x=3时,y= 9a+3b+c=0,故错误;观察图象得当x=-2时,y0,即4a-2b+c0b=-2a,4a+4a+c0即8a+c0,故正确.正确的结论有,故选:C【点睛】主要考查图象与二次函数系数之间的关系,会利用对称轴的表达式求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用3、B【解析】在正方
11、形ABCD中, AB=,AC4,ADDC,DAPDCA45o,当点Q在AD上时,PAPQ,DP=AP=x,S ;当点Q在DC上时,PCPQCP4x,S;所以该函数图象前半部分是抛物线开口向上,后半部分也为抛物线开口向下,故选B.【点睛】本题考查动点问题的函数图象,有一定难度,解题关键是注意点Q在AP、DC上这两种情况4、B【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】810 000=8.11故选B【点睛】本题考查了科学记
12、数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值5、D【解析】分别计算该组数据的平均数、中位数、众数及极差后即可得到正确的答案平均数为(12+5+9+5+14)5=9,故选项A正确;重新排列为5,5,9,12,14,中位数为9,故选项B正确;5出现了2次,最多,众数是5,故选项C正确;极差为:145=9,故选项D错误故选D6、D【解析】根据绝对值的意义即可解答【详解】由|a|b|,得a与原点的距离比b与原点的距离远, 只有选项D符合,故选D【点睛】本题考查了实数与数轴,熟练运用绝对值的意义是解题关键7、C【解析】三粒均匀的正六
13、面体骰子同时掷出共出现216种情况,而边长能构成直角三角形的数字为3、4、5,含这三个数字的情况有6种,故由概率公式计算即可.【详解】解:因为将三粒均匀的分别标有1,2,3,4,5,6的正六面体骰子同时掷出,按出现数字的不同共=216种情况,其中数字分别为3,4,5,是直角三角形三边长时,有6种情况,所以其概率为,故选C.【点睛】本题考查的是概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.边长为3,4,5的三角形组成直角三角形.8、D【解析】根据ED是BC的垂直平分线、BD是角平分线以及A=90可求得C=DBC=ABD=30,从
14、而可得CD=BD=2AD=6,然后利用三角函数的知识进行解答即可得.【详解】ED是BC的垂直平分线,DB=DC,C=DBC,BD是ABC的角平分线,ABD=DBC,A=90,C+ABD+DBC=90,C=DBC=ABD=30,BD=2AD=6,CD=6,CE =3,故选D【点睛】本题考查了线段垂直平分线的性质,三角形内角和定理,含30度角的直角三角形的性质,余弦等,结合图形熟练应用相关的性质及定理是解题的关键.9、B【解析】根据中心对称图形的概念 对各选项分析判断即可得解【详解】解:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不
15、是中心对称图形,故本选项错误故选B【点睛】本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合10、D【解析】解:如图:利用顶点式及取值范围,可画出函数图象会发现:当x=3时,y=k成立的x值恰好有三个.故选:D.二、填空题(共7小题,每小题3分,满分21分)11、270【解析】根据三角形的内角和与平角定义可求解【详解】解析:如图,根据题意可知5=90, 3+4=90, 1+2=180+180-(3+4)=360-90=270,故答案为:270度.【点睛】本题主要考查了三角形的内角和定理和内角与外角之间的关系要会熟练运用内角和定理求角的度数12、1【解析】由反比
16、例函数的性质列出不等式,解出k的范围,在这个范围写出k的整数解则可【详解】解:反比例函数的图象在一、三象限,2k0,即k2又k是正整数,k的值是:1故答案为:1【点睛】本题考查了反比例函数的性质:当k0时,图象分别位于第一、三象限;当k0时,图象分别位于第二、四象限13、x1【解析】要使代数式有意义时,必有1x2,可解得x的范围【详解】根据题意得:1x2,解得:x1故答案为x1【点睛】考查了分式和二次根式有意义的条件二次根式有意义,被开方数为非负数,分式有意义,分母不为214、【解析】由DEBC不难证明ABCADE,再由,将题中数值代入并根据等量关系计算AE的长.【详解】解:由DEBC不难证明
17、ABCADE,,CE=4,,解得:AE=故答案为.【点睛】本题考查了相似三角形的判定和性质,熟记三角形的判定和性质是解题关键.15、4 【解析】根据圆柱的侧面积公式,计算即可【详解】圆柱的底面半径为r=1,母线长为l=2,则它的侧面积为S侧=2rl=212=4故答案为:4【点睛】题考查了圆柱的侧面积公式应用问题,是基础题16、【解析】a3a=a(a2-1)=17、3或1【解析】菱形ABCD中,边长为1,对角线AC长为6,由菱形的性质及勾股定理可得ACBD,BO=4,分当点E在对角线交点左侧时(如图1)和当点E在对角线交点左侧时(如图2)两种情况求BE得长即可【详解】解:当点E在对角线交点左侧时
18、,如图1所示:菱形ABCD中,边长为1,对角线AC长为6,ACBD,BO= =4,tanEAC=,解得:OE=1,BE=BOOE=41=3,当点E在对角线交点左侧时,如图2所示:菱形ABCD中,边长为1,对角线AC长为6,ACBD,BO=4,tanEAC=,解得:OE=1,BE=BOOE=4+1=1,故答案为3或1【点睛】本题主要考查了菱形的性质,解决问题时要注意分当点E在对角线交点左侧时和当点E在对角线交点左侧时两种情况求BE得长三、解答题(共7小题,满分69分)18、1.4米.【解析】过点B作BEAD于点E,过点C作CFAD于点F,延长FC到点M,使得BE=CM,则EM=BC,在RtABE
19、、RtCDF中可求出AE、BE、DF、FC的长度,进而可得出EF的长度,再在RtMEF中利用勾股定理即可求出EM的长,此题得解【详解】过点B作BEAD于点E,过点C作CFAD于点F,延长FC到点M,使得BE=CM,如图所示,AB=CD,AB+CD=AD=2,AB=CD=1,在RtABE中,AB=1,A=37,BE=ABsinA0.6,AE=ABcosA0.8,在RtCDF中,CD=1,D=45,CF=CDsinD0.7,DF=CDcosD0.7,BEAD,CFAD,BECM,又BE=CM,四边形BEMC为平行四边形,BC=EM,CM=BE在RtMEF中,EF=ADAEDF=0.5,FM=CF+
20、CM=1.3,EM=1.4,B与C之间的距离约为1.4米【点睛】本题考查了解直角三角形的应用、勾股定理以及平行四边形的判定与性质,正确添加辅助线,构造直角三角形,利用勾股定理求出BC的长度是解题的关键19、(1)60, 90;(2)补图见解析;(3)300;(4).【解析】分析:(1)根据了解很少的人数除以了解很少的人数所占的百分百求出抽查的总人数,再用“基本了解”所占的百分比乘以360,即可求出“基本了解”部分所对应扇形的圆心角的度数;(2)用调查的总人数减去“基本了解”“了解很少”和“基本了解”的人数,求出了解的人数,从而补全统计图;(3)用总人数乘以“了解”和“基本了解”程度的人数所占的
21、比例,即可求出达到“了解”和“基本了解”程度的总人数;(4)根据题意列出表格,再根据概率公式即可得出答案详解:(1)60;90.(2)补全的条形统计图如图所示.(3)对食品安全知识达到“了解”和“基本了解”的学生所占比例为,由样本估计总体,该中学学生中对食品安全知识达到“了解”和“基本了解”程度的总人数为.(4)列表法如表所示,男生男生女生女生男生男生男生男生女生男生女生男生男生男生男生女生男生女生女生男生女生男生女生女生女生女生男生女生男生女生女生女生所有等可能的情况一共12种,其中选中1个男生和1个女生的情况有8种,所以恰好选中1个男生和1个女生的概率是.点睛:本题考查了条形统计图、扇形统
22、计图以及用列表法或树状图法求概率,根据题意求出总人数是解题的关键;注意运用概率公式:概率=所求情况数与总情况数之比20、 【解析】这道求代数式值的题目,不应考虑把x的值直接代入,通常做法是先化简,然后再代入求值【详解】解:原式=,当x=1时,原式=【点睛】本题考查了分式的化简求值,解题的关键是熟练的掌握分式的运算法则.21、(1)证明见解析 (2)6【解析】(1)直接利用切线的判定方法结合圆心角定理分析得出ODEF,即可得出答案;(2)直接利用得出SACDSCOD,再利用S阴影SAEDS扇形COD,求出答案【详解】(1)证明:连接OD,D为弧BC的中点,CADBAD,OAOD,BADADO,C
23、ADADO,DEAC,E90,CAD+EDA90,即ADO+EDA90,ODEF,EF为半圆O的切线;(2)解:连接OC与CD,DADF,BADF,BADFCAD,又BAD+CAD+F90,F30,BAC60,OCOA,AOC为等边三角形,AOC60,COB120,ODEF,F30,DOF60,在RtODF中,DF6,ODDFtan306,在RtAED中,DA6,CAD30,DEDAsin303,EADAcos309,COD180AOCDOF60,由CODO,COD是等边三角形,OCD60,DCOAOC60,CDAB,故SACDSCOD,S阴影SAEDS扇形COD【点睛】此题主要考查了切线的判
24、定,圆周角定理,等边三角形的判定与性质,解直角三角形及扇形面积求法等知识,得出SACDSCOD是解题关键22、(1);(2)P在第二象限,Q在第三象限【解析】试题分析:(1)求出点B坐标即可解决问题;(2)结论:P在第二象限,Q在第三象限利用反比例函数的性质即可解决问题;试题解析:解:(1)由题意B(2,),把B(2,)代入中,得到k=3,反比例函数的解析式为(2)结论:P在第二象限,Q在第三象限理由:k=30,反比例函数y在每个象限y随x的增大而增大,P(x1,y1)、Q(x2,y2)是该反比例函数图象上的两点,且x1x2时,y1y2,P、Q在不同的象限,P在第二象限,Q在第三象限点睛:此题
25、考查待定系数法、反比例函数的性质、坐标与图形的变化等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型23、51.96米【解析】先根据三角形外角的性质得出ACB=30,进而得出AB=BC=1,在RtBDC中,,即可求出CD的长【详解】解:CBD=1,CAB=30,ACB=30AB=BC=1在RtBDC中,(米)答:文峰塔的高度CD约为51.96米【点睛】本题考查解直角三角形的应用,解题的关键是明确题意,利用锐角三角函数进行解答24、(1)60,20;(2)渔政船距海岛A的距离AB约为24.49海里【解析】(1)利用题目总结的正弦定理,将有关数据代入求解即可;(2)在ABC中,分别求得BC的长和三个内角的度数,利用题目中总结的正弦定理求AC的长即可【详解】(1)由正玄定理得:A60,AC20;故答案为60,20;(2)如图:依题意,得BC400.520(海里)CDBE,DCBCBE180.DCB30,CBE150.ABE75,ABC75,A45.在ABC中,即,解得AB1024.49(海里)答:渔政船距海岛A的距离AB约为24.49海里【点睛】本题考查了方向角的知识,更重要的是考查了同学们的阅读理解能力,通过材料总结出学生们没有接触的知识,并根据此知识点解决相关的问题,是近几年中考的高频考点