《山东省济南市济钢高级中学2023届高考考前提分数学仿真卷含解析.doc》由会员分享,可在线阅读,更多相关《山东省济南市济钢高级中学2023届高考考前提分数学仿真卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1在三棱锥中,点到底面的距离为2,则三棱锥外接球的表面积为( )ABCD2若复数(为虚数单位)的实部与虚部相等,则的值为( )ABCD3设,其中a,b是实数,则( )A1B2CD4已
2、知圆与抛物线的准线相切,则的值为()A1B2CD45设,随机变量的分布列是01则当在内增大时,( )A减小,减小B减小,增大C增大,减小D增大,增大6如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积( )ABCD7已知定义在上的函数满足,且当时,.设在上的最大值为(),且数列的前项的和为.若对于任意正整数不等式恒成立,则实数的取值范围为( )ABCD8已知集合,若AB,则实数的取值范围是( )ABCD9设数列的各项均为正数,前项和为,且,则( )A128B65C64D6310在正方体中,球同时与以为公共顶点的三个面相切,球同时与以为公共顶点的三个面相切,且两球
3、相切于点.若以为焦点,为准线的抛物线经过,设球的半径分别为,则( )ABCD11已知命题p:直线ab,且b平面,则a;命题q:直线l平面,任意直线m,则lm.下列命题为真命题的是( )ApqBp(非q)C(非p)qDp(非q)12在区间上随机取一个数,使得成立的概率为等差数列的公差,且,若,则的最小值为( )A8B9C10D11二、填空题:本题共4小题,每小题5分,共20分。13已知,在方向上的投影为,则与的夹角为_.14已知向量,满足,则向量在的夹角为_.15已知,满足,则的展开式中的系数为_.16验证码就是将一串随机产生的数字或符号,生成一幅图片,图片里加上一些干扰象素(防止),由用户肉眼
4、识别其中的验证码信息,输入表单提交网站验证,验证成功后才能使用某项功能.很多网站利用验证码技术来防止恶意登录,以提升网络安全.在抗疫期间,某居民小区电子出入证的登录验证码由0,1,2,9中的五个数字随机组成.将中间数字最大,然后向两边对称递减的验证码称为“钟型验证码”(例如:如14532,12543),已知某人收到了一个“钟型验证码”,则该验证码的中间数字是7的概率为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知,为正数,且,证明:(1);(2).18(12分)在直角坐标系中,已知点,若以线段为直径的圆与轴相切.(1)求点的轨迹的方程;(2)若上存在两动点
5、(A,B在轴异侧)满足,且的周长为,求的值.19(12分)设为实数,已知函数,(1)当时,求函数的单调区间:(2)设为实数,若不等式对任意的及任意的恒成立,求的取值范围;(3)若函数(,)有两个相异的零点,求的取值范围20(12分)如图,在直三棱柱中,点P,Q分别为,的中点.求证:(1)PQ平面;(2)平面.21(12分)已知函数,,使得对任意两个不等的正实数,都有恒成立.(1)求的解析式;(2)若方程有两个实根,且,求证:.22(10分)设函数,其中()当为偶函数时,求函数的极值;()若函数在区间上有两个零点,求的取值范围参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出
6、的四个选项中,只有一项是符合题目要求的。1、C【解析】首先根据垂直关系可确定,由此可知为三棱锥外接球的球心,在中,可以算出的一个表达式,在中,可以计算出的一个表达式,根据长度关系可构造等式求得半径,进而求出球的表面积【详解】取中点,由,可知:,为三棱锥外接球球心,过作平面,交平面于,连接交于,连接,为的中点由球的性质可知:平面,且设,在中,即,解得:,三棱锥的外接球的半径为:,三棱锥外接球的表面积为故选:.【点睛】本题考查三棱锥外接球的表面积的求解问题,求解几何体外接球相关问题的关键是能够利用球的性质确定外接球球心的位置.2、C【解析】利用复数的除法,以及复数的基本概念求解即可.【详解】,又的
7、实部与虚部相等,解得.故选:C【点睛】本题主要考查复数的除法运算,复数的概念运用.3、D【解析】根据复数相等,可得,然后根据复数模的计算,可得结果.【详解】由题可知:,即,所以则故选:D【点睛】本题考查复数模的计算,考验计算,属基础题.4、B【解析】因为圆与抛物线的准线相切,则圆心为(3,0),半径为4,根据相切可知,圆心到直线的距离等于 半径,可知的值为2,选B.【详解】请在此输入详解!5、C【解析】,判断其在内的单调性即可【详解】解:根据题意在内递增,是以为对称轴,开口向下的抛物线,所以在上单调递减,故选:C【点睛】本题考查了利用随机变量的分布列求随机变量的期望与方差,属于中档题6、C【解
8、析】画出几何体的直观图,利用三视图的数据求解几何体的表面积即可【详解】解:几何体的直观图如图,是正方体的一部分,PABC,正方体的棱长为2,该几何体的表面积:故选C【点睛】本题考查三视图求解几何体的直观图的表面积,判断几何体的形状是解题的关键7、C【解析】由已知先求出,即,进一步可得,再将所求问题转化为对于任意正整数恒成立,设,只需找到数列的最大值即可.【详解】当时,则,所以,显然当时,故,若对于任意正整数不等式恒成立,即对于任意正整数恒成立,即对于任意正整数恒成立,设,令,解得,令,解得,考虑到,故有当时,单调递增,当时,有单调递减,故数列的最大值为,所以.故选:C.【点睛】本题考查数列中的
9、不等式恒成立问题,涉及到求函数解析、等比数列前n项和、数列单调性的判断等知识,是一道较为综合的数列题.8、D【解析】先化简,再根据,且AB求解.【详解】因为,又因为,且AB,所以.故选:D【点睛】本题主要考查集合的基本运算,还考查了运算求解的能力,属于基础题.9、D【解析】根据,得到,即,由等比数列的定义知数列是等比数列,然后再利用前n项和公式求.【详解】因为,所以,所以,所以数列是等比数列,又因为,所以,.故选:D【点睛】本题主要考查等比数列的定义及等比数列的前n项和公式,还考查了运算求解的能力,属于中档题.10、D【解析】由题先画出立体图,再画出平面处的截面图,由抛物线第一定义可知,点到点
10、的距离即半径,也即点到面的距离,点到直线的距离即点到面的距离因此球内切于正方体,设,两球球心和公切点都在体对角线上,通过几何关系可转化出,进而求解【详解】根据抛物线的定义,点到点的距离与到直线的距离相等,其中点到点的距离即半径,也即点到面的距离,点到直线的距离即点到面的距离,因此球内切于正方体,不妨设,两个球心和两球的切点均在体对角线上,两个球在平面处的截面如图所示,则,所以.又因为,因此,得,所以. 故选:D【点睛】本题考查立体图与平面图的转化,抛物线几何性质的使用,内切球的性质,数形结合思想,转化思想,直观想象与数学运算的核心素养11、C【解析】首先判断出为假命题、为真命题,然后结合含有简
11、单逻辑联结词命题的真假性,判断出正确选项.【详解】根据线面平行的判定,我们易得命题若直线,直线平面,则直线平面或直线在平面内,命题为假命题;根据线面垂直的定义,我们易得命题若直线平面,则若直线与平面内的任意直线都垂直,命题为真命题.故:A命题“”为假命题;B命题“”为假命题;C命题“”为真命题;D命题“”为假命题.故选:C.【点睛】本小题主要考查线面平行与垂直有关命题真假性的判断,考查含有简单逻辑联结词的命题的真假性判断,属于基础题.12、D【解析】由题意,本题符合几何概型,只要求出区间的长度以及使不等式成立的的范围区间长度,利用几何概型公式可得概率,即等差数列的公差,利用条件,求得,从而求得
12、,解不等式求得结果.【详解】由题意,本题符合几何概型,区间长度为6,使得成立的的范围为,区间长度为2,故使得成立的概率为,又,令,则有,故的最小值为11,故选:D.【点睛】该题考查的是有关几何概型与等差数列的综合题,涉及到的知识点有长度型几何概型概率公式,等差数列的通项公式,属于基础题目.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由向量投影的定义可求得两向量夹角的余弦值,从而得角的大小【详解】在方向上的投影为,即夹角为.故答案为:【点睛】本题考查求向量的夹角,掌握向量投影的定义是解题关键14、【解析】把平方利用数量积的运算化简即得解.【详解】因为,所以,因为所以.故答案为:
13、【点睛】本题主要考查平面向量的数量积的运算法则,考查向量的夹角的计算,意在考查学生对这些知识的理解掌握水平.15、1【解析】根据二项式定理求出,然后再由二项式定理或多项式的乘法法则结合组合的知识求得系数【详解】由题意,的展开式中的系数为故答案为:1【点睛】本题考查二项式定理,掌握二项式定理的应用是解题关键16、【解析】首先判断出中间号码的所有可能取值,由此求得基本事件的总数以及中间数字是的事件数,根据古典概型概率计算公式计算出所求概率.【详解】根据“钟型验证码” 中间数字最大,然后向两边对称递减,所以中间的数字可能是.当中间是时,其它个数字可以是,选其中两个排在左边(排法唯一),另外两个排在右
14、边(排法唯一),所以方法数有种.当中间是时,其它个数字可以是,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有种.当中间是时,其它个数字可以是,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有种.当中间是时,其它个数字可以是,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有种.当中间是时,其它个数字可以是,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有种.当中间是时,其它个数字可以是,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有种.所以该验证码的中间数字是7的
15、概率为.故答案为:【点睛】本小题主要考查古典概型概率计算,考查分类加法计数原理、分类乘法计数原理的应用,考查运算求解能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)证明见解析.【解析】(1)利用均值不等式即可求证;(2)利用,结合,即可证明.【详解】(1),同理有,.(2),.同理有,.【点睛】本题考查利用均值不等式证明不等式,涉及的妙用,属综合性中档题.18、(1);(2)【解析】(1)设,则由题设条件可得,化简后可得轨迹的方程.(2)设直线,联立直线方程和抛物线方程后利用韦达定理化简并求得,结合焦半径公式及弦长公式可求的值及的长
16、.【详解】(1)设,则圆心的坐标为,因为以线段为直径的圆与轴相切,所以,化简得的方程为.(2)由题意,设直线,联立得,设 (其中)所以,且,因为,所以,所以,故或 (舍),直线,因为的周长为所以.即,因为.又,所以,解得,所以.【点睛】本题考查曲线方程以及抛物线中的弦长计算,还涉及到向量的数量积.一般地,抛物线中的弦长问题,一般可通过联立方程组并消元得到关于或的一元二次方程,再把已知等式化为关于两个的交点横坐标或纵坐标的关系式,该关系中含有或,最后利用韦达定理把关系式转化为某一个变量的方程.本题属于中档题.19、(1)函数单调减区间为;单调增区间为(2)(3)【解析】(1)据导数和函数单调性的
17、关系即可求出;(2)分离参数,可得对任意的及任意的恒成立,构造函数,利用导数求出函数的最值即可求出的范围;(3)先求导,再分类讨论,根据导数和函数单调性以及最值得关系即可求出的范围【详解】解:(1)当时,因为,当时,;当时,所以函数单调减区间为;单调增区间为(2)由,得,由于,所以对任意的及任意的恒成立,由于,所以,所以对任意的恒成立,设,则,所以函数在上单调递减,在上单调递增,所以,所以(3)由,得,其中若时,则,所以函数在上单调递增,所以函数至多有一个零点,不合题意;若时,令,得由第(2)小题,知:当时,所以,所以,所以当时,函数的值域为所以,存在,使得,即, 且当时,所以函数在上单调递增
18、,在上单调递减因为函数有两个零点,所以设,则,所以函数在单调递增,由于,所以当时,所以,式中的,又由式,得由第(1)小题可知,当时,函数在上单调递减,所以,即当时,()由于,所以得,又因为,且函数在上单调递减,函数的图象在上不间断,所以函数在上恰有一个零点;()由于,令,设,由于时,所以设,即由式,得,当时,且,同理可得函数在上也恰有一个零点综上,【点睛】本题考查含参数的导数的单调性,利用导数求不等式恒成立问题,以及考查函数零点问题,考查学生的计算能力,是综合性较强的题.20、(1)见解析(2)见解析【解析】(1)取的中点D,连结,.根据线面平行的判定定理即得;(2)先证,和都是平面内的直线且
19、交于点,由(1)得,再结合线面垂直的判定定理即得.【详解】(1)取的中点D,连结,.在中,P,D分别为,中点,且.在直三棱柱中,.Q为棱的中点,且.,.四边形为平行四边形,从而.又平面,平面,平面.(2)在直三棱柱中,平面.又平面,.,D为中点,.由(1)知,.又,平面,平面,平面.【点睛】本题考查线面平行的判定定理,以及线面垂直的判定定理,难度不大.21、(1);(2)证明见解析.【解析】(1)根据题意,在上单调递减,求导得,分类讨论的单调性,结合题意,得出的解析式;(2)由为方程的两个实根,得出,两式相减,分别算出和,利用换元法令和构造函数,根据导数研究单调性,求出,即可证出结论.【详解】
20、(1)根据题意,对任意两个不等的正实数,都有恒成立.则在上单调递减,因为,当时,在内单调递减.,当时,由,有,此时,当时,单调递减,当时,单调递增,综上,所以. (2)由为方程的两个实根,得,两式相减,可得, 因此,令,由,得, 则,构造函数.则,所以函数在上单调递增,故,即, 可知,故,命题得证.【点睛】本题考查利用导数研究函数的单调性求函数的解析式、以及利用构造函数法证明不等式,考查转化思想、解题分析能力和计算能力.22、()极小值,极大值;()或【解析】()根据偶函数定义列方程,解得.再求导数,根据导函数零点列表分析导函数符号变化规律,即得极值,()先分离变量,转化研究函数,利用导数研究
21、单调性与图象,最后根据图象确定满足条件的的取值范围【详解】()由函数是偶函数,得,即对于任意实数都成立,所以. 此时,则.由,解得. 当x变化时,与的变化情况如下表所示: 00极小值极大值所以在,上单调递减,在上单调递增. 所以有极小值,有极大值. ()由,得. 所以“在区间上有两个零点”等价于“直线与曲线,有且只有两个公共点”. 对函数求导,得. 由,解得,. 当x变化时,与的变化情况如下表所示: 00极小值极大值所以在,上单调递减,在上单调递增. 又因为,所以当或时,直线与曲线,有且只有两个公共点. 即当或时,函数在区间上有两个零点.【点睛】利用函数零点的情况求参数值或取值范围的方法(1)利用零点存在的判定定理构建不等式求解.(2)分离参数后转化为函数的值域(最值)问题求解.(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.