《山东省泰安市泰前中学2023年中考数学仿真试卷含解析.doc》由会员分享,可在线阅读,更多相关《山东省泰安市泰前中学2023年中考数学仿真试卷含解析.doc(24页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1如图,矩形纸片中,将沿折叠,使点落在点处,交于点,则的长等于( )ABCD2如图,矩形ABCD中,E为DC的中点,AD:AB:2,CP:BP1:2,连接EP并延长,交AB的延长线于点F,AP、BE相交于点O下列结论:EP平分CEB;PBEF;PFEF2;EFEP4AOPO其中正确的是()ABCD3如
2、图,在正方形ABCD中,AB=9,点E在CD边上,且DE=2CE,点P是对角线AC上的一个动点,则PE+PD的最小值是()ABC9D4若点M(3,y1),N(4,y2)都在正比例函数y=k2x(k0)的图象上,则y1与y2的大小关系是()Ay1y2 By1y2 Cy1=y2 D不能确定5下列哪一个是假命题()A五边形外角和为360B切线垂直于经过切点的半径C(3,2)关于y轴的对称点为(3,2)D抛物线y=x24x+2017对称轴为直线x=26图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中正方形顶点A,B在围成的正方体中的距离是()A0B1CD7在平面直角坐标系中,正
3、方形A1B1C1D1、D1 E1E2B2、A2B2 C2D2、D2E3E4B3按如图所示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3在x轴上,已知正方形A1B1C1D1的边长为l,B1C1O=60,B1C1B2C2B3C3,则正方形A2017B2017C2017 D2017的边长是()A()2016 B()2017 C()2016 D()20178有三张正面分别标有数字2 ,3, 4 的不透明卡片,它们除数字不同外,其余全部相同,现将它们背面朝上洗匀后, 从中任取一张(不放回),再从剩余的卡片中任取一张, 则两次抽取的卡片上的数字之积为正偶数的概率是( )ABCD
4、9的值为( )AB-C9D-910如图,小明从A处出发沿北偏东60方向行走至B处,又沿北偏西20方向行走至C处,此时需把方向调整到与出发时一致,则方向的调整应是()A右转80B左转80C右转100D左转100二、填空题(本大题共6个小题,每小题3分,共18分)11如图,设ABC的两边AC与BC之和为a,M是AB的中点,MCMA5,则a的取值范围是_12如果点P1(2,y1)、P2(3,y2) 在抛物线上,那么 y1 _ y2.(填“”,“【解析】分析:首先求得抛物线y=x2+2x的对称轴是x=1,利用二次函数的性质,点M、N在对称轴的右侧,y随着x的增大而减小,得出答案即可详解:抛物线y=x2
5、+2x的对称轴是x=1a=10,抛物线开口向下,123,y1y2 故答案为点睛:本题考查了二次函数图象上点的坐标特征,二次函数的性质,求得对称轴,掌握二次函数图象的性质解决问题13、x1【解析】试题分析:由题意得,x+10,解得x1故答案为x1考点:函数自变量的取值范围14、或【解析】MN是AB的中垂线,则ABN是等腰三角形,且NA=NB,即可得到B=BAN=C然后对ANC中的边进行讨论,然后在ABC中,利用三角形内角和定理即可求得B的度数解:把ABC折叠,使点B与点A重合,折痕交AB于点M,交BC于点N,MN是AB的中垂线NB=NAB=BAN,AB=ACB=C设B=x,则C=BAN=x1)当
6、AN=NC时,CAN=C=x则在ABC中,根据三角形内角和定理可得:4x=180,解得:x=45则B=45;2)当AN=AC时,ANC=C=x,而ANC=B+BAN,故此时不成立;3)当CA=CN时,NAC=ANC=在ABC中,根据三角形内角和定理得到:x+x+x+=180,解得:x=36故B的度数为 45或3615、(16,) (8068,) 【解析】利用勾股定理列式求出AB的长,再根据图形写出第(5)个三角形的直角顶点的坐标即可;观察图形不难发现,每3个三角形为一个循环组依次循环,用2018除以3,根据商和余数的情况确定出第(2018)个三角形的直角顶点到原点O的距离,然后写出坐标即可【详
7、解】点A(4,0),B(0,3),OA=4,OB=3,AB=5,第(2)个三角形的直角顶点的坐标是(4,);53=1余2,第(5)个三角形的直角顶点的坐标是(16,),20183=672余2,第(2018)个三角形是第672组的第二个直角三角形,其直角顶点与第672组的第二个直角三角形顶点重合,第(2018)个三角形的直角顶点的坐标是(8068,)故答案为:(16,);(8068,)【点睛】本题考查了坐标与图形变化-旋转,解题的关键是根据题意找出每3个三角形为一个循环组依次循环.16、5【解析】根据题意得出球在无滑动旋转中通过的路程为圆弧,根据弧长公式求出弧长即可【详解】解:由图形可知,圆心先
8、向前走OO1的长度,从O到O1的运动轨迹是一条直线,长度为圆的周长,然后沿着弧O1O2旋转圆的周长,则圆心O运动路径的长度为:255,故答案为5【点睛】本题考查的是弧长的计算和旋转的知识,解题关键是确定半圆作无滑动翻转所经过的路线并求出长度三、解答题(共8题,共72分)17、(1)抛物线l2的函数表达式;y=x24x1;(2)P点坐标为(1,1);(3)在点M自点A运动至点E的过程中,线段MN长度的最大值为12.1【解析】(1)由抛物线l1的对称轴求出b的值,即可得出抛物线l1的解析式,从而得出点A、点B的坐标,由点B、点E、点D的坐标求出抛物线l2的解析式即可;(2)作CHPG交直线PG于点
9、H,设点P的坐标为(1,y),求出点C的坐标,进而得出CH=1,PH=|3y |,PG=|y |,AG=2,由PA=PC可得PA2=PC2,由勾股定理分别将PA2、PC2用CH、PH、PG、AG表示,列方程求出y的值即可;(3)设出点M的坐标,求出两个抛物线交点的横坐标分别为1,4,当1x4时,点M位于点N的下方,表示出MN的长度为关于x的二次函数,在x的范围内求二次函数的最值;当4x1时,点M位于点N的上方,同理求出此时MN的最大值,取二者较大值,即可得出MN的最大值.【详解】(1)抛物线l1:y=x2+bx+3对称轴为x=1,x=1,b=2,抛物线l1的函数表达式为:y=x2+2x+3,当
10、y=0时,x2+2x+3=0,解得:x1=3,x2=1,A(1,0),B(3,0),设抛物线l2的函数表达式;y=a(x1)(x+1),把D(0,1)代入得:1a=1,a=1,抛物线l2的函数表达式;y=x24x1;(2)作CHPG交直线PG于点H,设P点坐标为(1,y),由(1)可得C点坐标为(0,3),CH=1,PH=|3y |,PG=|y |,AG=2,PC2=12+(3y)2=y26y+10,PA2= =y2+4,PC=PA,PA2=PC2,y26y+10=y2+4,解得y=1,P点坐标为(1,1);(3)由题意可设M(x,x24x1),MNy轴,N(x,x2+2x+3),令x2+2x
11、+3=x24x1,可解得x=1或x=4,当1x4时,MN=(x2+2x+3)(x24x1)=2x2+6x+8=2(x)2+,显然14,当x=时,MN有最大值12.1;当4x1时,MN=(x24x1)(x2+2x+3)=2x26x8=2(x)2,显然当x时,MN随x的增大而增大,当x=1时,MN有最大值,MN=2(1)2=12.综上可知:在点M自点A运动至点E的过程中,线段MN长度的最大值为12.1【点睛】本题是二次函数与几何综合题, 主要考查二次函数解析式的求解、勾股定理的应用以及动点求线段最值问题.18、(1)证明见解析;(2)四边形EFGH是菱形,证明见解析;(3)四边形EFGH是正方形.
12、【解析】(1)如图1中,连接BD,根据三角形中位线定理只要证明EHFG,EH=FG即可(2)四边形EFGH是菱形先证明APCBPD,得到AC=BD,再证明EF=FG即可(3)四边形EFGH是正方形,只要证明EHG=90,利用APCBPD,得ACP=BDP,即可证明COD=CPD=90,再根据平行线的性质即可证明【详解】(1)证明:如图1中,连接BD点E,H分别为边AB,DA的中点,EHBD,EH=BD,点F,G分别为边BC,CD的中点,FGBD,FG=BD,EHFG,EH=GF,中点四边形EFGH是平行四边形(2)四边形EFGH是菱形证明:如图2中,连接AC,BDAPB=CPD,APB+APD
13、=CPD+APD,即APC=BPD,在APC和BPD中,AP=PB,APC=BPD,PC=PD,APCBPD,AC=BD点E,F,G分别为边AB,BC,CD的中点,EF=AC,FG=BD,四边形EFGH是平行四边形,四边形EFGH是菱形(3)四边形EFGH是正方形证明:如图2中,设AC与BD交于点OAC与PD交于点M,AC与EH交于点NAPCBPD,ACP=BDP,DMO=CMP,COD=CPD=90,EHBD,ACHG,EHG=ENO=BOC=DOC=90,四边形EFGH是菱形,四边形EFGH是正方形考点:平行四边形的判定与性质;中点四边形19、【解析】由题意可知:菱形ABCD的边长是5,则
14、AO2+BO2=25,则再根据根与系数的关系可得:AO+BO=(2m1),AOBO=m2+3;代入AO2+BO2中,得到关于m的方程后,即可求得m的值【详解】解:,的长分别是关于的方程的两根,设方程的两根为和,可令,四边形是菱形,在中:由勾股定理得:,则,由根与系数的关系得:,整理得:,解得:,又,解得,【点睛】此题主要考查了菱形的性质、勾股定理、以及根与系数的关系,将菱形的性质与一元二次方程根与系数的关系,以及代数式变形相结合解题是一种经常使用的解题方法20、 (1)见解析;(2)3;(3)2;(4)1,EB、BF;FC、CG;GD、DH;HA【解析】利用菱形四条边相等,分别在四边上进行截取
15、和连接,得出AE=EB+BF=FC+CG+GD+DH=HA,进一步求得SAOES四边形EOFBS四边形FOGCS四边形GOHDSHOA即可【详解】(1)在AB边上取点E,使AE4,连接OA,OE;(2)在BC边上取点F,使BF3,连接OF;(3)在CD边上取点G,使CG2,连接OG;(4)在DA边上取点H,使DH1,连接OH由于AEEBBFFCCGGDDHHA可证SAOES四边形EOFBS四边形FOGCS四边形GOHDSHOA故答案为:3,2,1;EB、BF;FC、CG;GD、DH;HA【点睛】此题考查菱形的性质,熟练掌握菱形的四条边相等,对角线互相垂直是解题的关键.21、(1)详见解析;(2
16、)详见解析;(3)DF=【解析】(1)先判断出ADBC,即可得出结论;(2)先判断出ODAC,进而判断出CED=ODE,判断出CDECAD,即可得出结论;(3)先求出OD,再求出CD=3,进而求出CE,AE,DE,再判断出,即可得出结论【详解】(1)连接AD,AB是O的直径,ADB=90,ADBC,AB=AC, BD=CD;(2)连接OD,DE是O的切线,ODE=90,由(1)知,BD=CD,OA=OB,ODAC,CED=ODE=90=ADC,C=C,CDECAD,CD2=CEAC;(3)AB=AC=5,由(1)知,ADB=90,OA=OB,OD=AB=,由(1)知,CD=BC=3,由(2)知
17、,CD2=CEAC,AC=5,CE=,AE=AC-CE=5-=,在RtCDE中,根据勾股定理得,DE=,由(2)知,ODAC,DF=【点睛】此题是圆的综合题,主要考查了圆的性质,等腰三角形的性质,相似三角形的判断和性质,勾股定理,判断出CDECAD是解本题的关键22、为;点Q的坐标为或【解析】依据抛物线的对称轴方程可求得b的值,然后将点B的坐标代入线可求得c的值,即可求得抛物线的表达式;由平移后抛物线的顶点在x轴上可求得平移的方向和距离,故此,然后由点,轴可得到点Q和P关于x对称,可求得点Q的纵坐标,将点Q的纵坐标代入平移后的解析式可求得对应的x的值,则可得到点Q的坐标【详解】抛物线顶点A的横
18、坐标是,即,解得将代入得:,抛物线的解析式为抛物线向下平移了4个单位平移后抛物线的解析式为,点O在PQ的垂直平分线上又轴,点Q与点P关于x轴对称点Q的纵坐标为将代入得:,解得:或点Q的坐标为或【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、二次函数的平移规律、线段垂直平分线的性质,发现点Q与点P关于x轴对称,从而得到点Q的纵坐标是解题的关键23、(1)5;(2)O(,);(3)P(,).【解析】(1)先求出AB利用旋转判断出ABB是等腰直角三角形,即可得出结论;(2)先判断出HAO=60,利用含30度角的直角三角形的性质求出AH,OH,即可得出结论;
19、(3)先确定出直线OC的解析式,进而确定出点P的坐标,再利用含30度角的直角三角形的性质即可得出结论【详解】解:(1)A(3,0),B(0,4),OA=3,OB=4,AB=5,由旋转知,BA=BA,BAB=90,ABB是等腰直角三角形,BB=AB=5;(2)如图2,过点O作OHx轴于H,由旋转知,OA=OA=3,OAO=120,HAO=60,HOA=30,AH=AO=,OH=AH=,OH=OA+AH=,O();(3)由旋转知,AP=AP,OP+AP=OP+AP如图3,作A关于y轴的对称点C,连接OC交y轴于P,OP+AP=OP+CP=OC,此时,OP+AP的值最小点C与点A关于y轴对称,C(3
20、,0)O(),直线OC的解析式为y=x+,令x=0,y=,P(0,),OP=OP=,作PDOH于DBOA=BOA=90,AOH=30,DPO=30,OD=OP=,PD=OD=,DH=OHOD=,OH+PD=,P()【点睛】本题是几何变换综合题,考查了旋转的性质,等腰直角三角形的性质,含30度角的直角三角形的性质,构造出直角三角形是解答本题的关键24、(1);(2) .【解析】试题分析:(1)直接列举出两次传球的所有结果,球球恰在B手中的结果只有一种即可求概率;(2)画出树状图,表示出三次传球的所有结果,三次传球后,球恰在A手中的结果有2种,即可求出三次传球后,球恰在A手中的概率试题解析:解:(1)两次传球的所有结果有4种,分别是ABC,ABA,ACB,ACA每种结果发生的可能性相等,球球恰在B手中的结果只有一种,所以两次传球后,球恰在B手中的概率是;(2)树状图如下,由树状图可知,三次传球的所有结果有8种,每种结果发生的可能性相等其中,三次传球后,球恰在A手中的结果有ABCA,ACBA这两种,所以三次传球后,球恰在A手中的概率是考点:用列举法求概率