《山东省临沂市临沂市蒙阴县2023届十校联考最后数学试题含解析.doc》由会员分享,可在线阅读,更多相关《山东省临沂市临沂市蒙阴县2023届十校联考最后数学试题含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是()ABCD2函数在同一直角坐标系内的图象大致是()ABCD3一次函数y=kx+k(k0)和反比例函数在同一直角
2、坐标系中的图象大致是( )ABCD4如图,O的直径AB=2,C是弧AB的中点,AE,BE分别平分BAC和ABC,以E为圆心,AE为半径作扇形EAB,取3,则阴影部分的面积为()A4B74C6D5某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为()A180元B200元C225元D259.2元6如图,等腰直角三角形纸片ABC中,C=90,把纸片沿EF对折后,点A恰好落在BC上的点D处,点CE=1,AC=4,则下列结论一定正确的个数是()CDE=DFB;BDCE;BC=CD;DCE与BDF的周长相等A1个B2个C3个D4个7下列图形不是正方体展开图的是()AB
3、CD8如果,则a的取值范围是( )Aa0Ba0Ca0Da09如图,在ABC中,CAB75,在同一平面内,将ABC绕点A逆时针旋转到ABC的位置,使得CCAB,则CAC为()A30B35C40D5010用6个相同的小正方体搭成一个几何体,若它的俯视图如图所示,则它的主视图不可能是()ABCD112017年新设了雄安新区,周边经济受到刺激综合实力大幅跃升,其中某地区生产总值预计可增长到305.5亿元其中305.5亿用科学记数法表示为( )A305.5104 B3.055102 C3.0551010 D3.055101112如图,将一正方形纸片沿图(1)、(2)的虚线对折,得到图(3),然后沿图(3
4、)中虚线的剪去一个角,展开得平面图形(4),则图(3)的虚线是()ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13若关于x的一元二次方程x2+2xm2m=0(m0),当m=1、2、3、2018时,相应的一元二次方程的两个根分别记为1、1,2、2,2018、2018,则:的值为_14已知一元二次方程x24x30的两根为m,n,则mn= 15如图,某水库大坝的横断面是梯形,坝顶宽米,坝高是20米,背水坡的坡角为30,迎水坡的坡度为12,那么坝底的长度等于_米(结果保留根号)16如图,四边形ACDF是正方形,和都是直角,且点三点共线,则阴影部分的面积是_17若点A(3,4)、B(2
5、,m)在同一个反比例函数的图象上,则m的值为 18计算(x4)2的结果等于_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)解方程(1)x11x10(1)(x+1)14(x1)120(6分)已知关于x,y的二元一次方程组的解为,求a、b的值21(6分)学校实施新课程改革以来,学生的学习能力有了很大提高王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A:特别好,B:好,C:一般,D:较差)后,再将调查结果绘制成两幅不完整的统计图(如图1,2)请根据统计图解答下列问题:本次调查中,王老师一共调查了 名学生;
6、将条形统计图补充完整;为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率22(8分)如图,一次函数的图象与反比例函数(为常数,且)的图象交于A(1,a)、B两点求反比例函数的表达式及点B的坐标;在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标及PAB的面积23(8分)某学校准备采购一批茶艺耗材和陶艺耗材.经查询,如果按照标价购买两种耗材,当购买茶艺耗材的数量是陶艺耗材数量的2倍时,购买茶艺耗材共需要18000元,购买陶艺耗材共需要12000元,且一套陶艺耗材单价比一套茶艺耗材单价贵15
7、0元.求一套茶艺耗材、一套陶艺耗材的标价分别是多少元?学校计划购买相同数量的茶艺耗材和陶艺耗材.商家告知,因为周年庆,茶艺耗材的单价在标价的基础上降价2元,陶艺耗材的单价在标价的基础降价150元,该校决定增加采购数量,实际购买茶艺耗材和陶艺耗材的数量在原计划基础上分别增加了2.5%和,结果在结算时发现,两种耗材的总价相等,求的值.24(10分)如图,点D是AB上一点,E是AC的中点,连接DE并延长到F,使得DE=EF,连接CF求证:FCAB25(10分)已知BD平分ABF,且交AE于点D(1)求作:BAE的平分线AP(要求:尺规作图,保留作图痕迹,不写作法);(2)设AP交BD于点O,交BF于
8、点C,连接CD,当ACBD时,求证:四边形ABCD是菱形26(12分)如图,在ABC中,D为BC边上一点,AC=DC,E为AB边的中点,(1)尺规作图:作C的平分线CF,交AD于点F(保留作图痕迹,不写作法);(2)连接EF,若BD=4,求EF的长27(12分)某市为了解市民对已闭幕的某一博览会的总体印象,利用最新引进的“计算机辅助电话访问系统”(简称CATI系统),采取电脑随机抽样的方式,对本市年龄在1665岁之间的居民,进行了400个电话抽样调查并根据每个年龄段的抽查人数和该年龄段对博览会总体印象感到满意的人数绘制了下面的图(1)和图(1)(部分)根据上图提供的信息回答下列问题:(1)被抽
9、查的居民中,人数最多的年龄段是 岁;(1)已知被抽查的400人中有83%的人对博览会总体印象感到满意,请你求出3140岁年龄段的满意人数,并补全图1注:某年龄段的满意率=该年龄段满意人数该年龄段被抽查人数100%参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】分析:根据概率的求法,找准两点:全部情况的总数;符合条件的情况数目;二者的比值就是其发生的概率详解:共6个数,大于3的有3个,P(大于3)=.故选D点睛:本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概
10、率P(A)=2、C【解析】根据a、b的符号,针对二次函数、一次函数的图象位置,开口方向,分类讨论,逐一排除【详解】当a0时,二次函数的图象开口向上,一次函数的图象经过一、三或一、二、三或一、三、四象限,故A、D不正确;由B、C中二次函数的图象可知,对称轴x=-0,且a0,则b0,但B中,一次函数a0,b0,排除B故选C3、C【解析】A、由反比例函数的图象在一、三象限可知k0,由一次函数的图象过二、四象限可知k0,两结论相矛盾,故选项错误; B、由反比例函数的图象在二、四象限可知k0,由一次函数的图象与y轴交点在y轴的正半轴可知k0,两结论相矛盾,故选项错误;C、由反比例函数的图象在二、四象限可
11、知k0,由一次函数的图象过二、三、四象限可知k0,两结论一致,故选项正确;D、由反比例函数的图象在一、三象限可知k0,由一次函数的图象与y轴交点在y轴的负半轴可知k0,两结论相矛盾,故选项错误,故选C4、A【解析】O的直径AB=2,C=90,C是弧AB的中点,AC=BC,CAB=CBA=45,AE,BE分别平分BAC和ABC,EAB=EBA=22.5,AEB=180 (BAC+CBA)=135,连接EO,EAB=EBA,EA=EB,OA=OB,EOAB,EO为RtABC内切圆半径,SABC=(AB+AC+BC)EO=ACBC,EO=1,AE2=AO2+EO2=12+(1)2=42,扇形EAB的
12、面积=,ABE的面积=ABEO=1,弓形AB的面积=扇形EAB的面积ABE的面积=,阴影部分的面积=O的面积弓形AB的面积=()=4,故选:A.5、A【解析】设这种商品每件进价为x元,根据题中的等量关系列方程求解.【详解】设这种商品每件进价为x元,则根据题意可列方程2700.8x0.2x,解得x180.故选A.【点睛】本题主要考查一元一次方程的应用,解题的关键是确定未知数,根据题中的等量关系列出正确的方程.6、D【解析】等腰直角三角形纸片ABC中,C=90,A=B=45,由折叠可得,EDF=A=45,CDE+BDF=135,DFB+B=135,CDE=DFB,故正确;由折叠可得,DE=AE=3
13、,CD=,BD=BCDC=41,BDCE,故正确;BC=4,CD=4,BC=CD,故正确;AC=BC=4,C=90,AB=4,DCE的周长=1+3+2=4+2,由折叠可得,DF=AF,BDF的周长=DF+BF+BD=AF+BF+BD=AB+BD=4+(42)=4+2,DCE与BDF的周长相等,故正确;故选D点睛:本题主要考查了折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等7、B【解析】由平面图形的折叠及正方体的展开图解题【详解】A、C、D经过折叠均能围成正方体,B折叠后上边没有面,不能折成正方体故选B【点睛】此题主要考查平面图形的折叠及正
14、方体的展开图,熟练掌握,即可解题.8、C【解析】根据绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,1的绝对值是1若|-a|=-a,则可求得a的取值范围注意1的相反数是1【详解】因为|-a|1,所以-a1,那么a的取值范围是a1故选C【点睛】绝对值规律总结:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,1的绝对值是19、A【解析】根据旋转的性质可得AC=AC,BAC=BAC,再根据两直线平行,内错角相等求出ACC=CAB,然后利用等腰三角形两底角相等求出CAC,再求出BAB=CAC,从而得解【详解】CCAB,CAB75,CCACAB75,又C、C为对应点,点A为
15、旋转中心,ACAC,即ACC为等腰三角形,CAC1802CCA30故选A【点睛】此题考查等腰三角形的性质,旋转的性质和平行线的性质,运用好旋转的性质是解题关键10、D【解析】分析:根据主视图和俯视图之间的关系可以得出答案详解: 主视图和俯视图的长要相等, 只有D选项中的长和俯视图不相等,故选D点睛:本题主要考查的就是三视图的画法,属于基础题型三视图的画法为:主视图和俯视图的长要相等;主视图和左视图的高要相等;左视图和俯视图的宽要相等11、C【解析】解:305.5亿=3.0551故选C12、D【解析】本题关键是正确分析出所剪时的虚线与正方形纸片的边平行.【详解】要想得到平面图形(4),需要注意(
16、4)中内部的矩形与原来的正方形纸片的边平行,故剪时,虚线也与正方形纸片的边平行,所以D是正确答案,故本题正确答案为D选项.【点睛】本题考查了平面图形在实际生活中的应用,有良好的空间想象能力过动手能力是解题关键.二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】利用根与系数的关系得到1+1=-2,11=-12;2+2=-2,22=-23;2018+2018=-2,20182018=-20181把原式变形,再代入,即可求出答案【详解】x2+2x-m2-m=0,m=1,2,3,2018,由根与系数的关系得:1+1=-2,11=-12;2+2=-2,22=-23;2018+2018=
17、-2,20182018=-20181原式= = =2()=2(1-)=,故答案为【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a0)的两根时,x1+x2=-,x1x2=14、1【解析】试题分析:由m与n为已知方程的解,利用根与系数的关系求出m+n=4,mn=3,将所求式子利用完全平方公式变形后,即mn+=3mn=16+9=1故答案为1考点:根与系数的关系15、【解析】过梯形上底的两个顶点向下底引垂线、,得到两个直角三角形和一个矩形,分别解、求得线段、的长,然后与相加即可求得的长【详解】如图,作,垂足分别为点E,F,则四边形是矩形由题意得,米,米,斜坡的坡度为
18、12,在中,米在RtDCF中,斜坡的坡度为12,米,(米)坝底的长度等于米故答案为【点睛】此题考查了解直角三角形的应用坡度坡角问题,难度适中,解答本题的关键是构造直角三角形和矩形,注意理解坡度与坡角的定义16、8【解析】【分析】证明AECFBA,根据全等三角形对应边相等可得EC=AB=4,然后再利用三角形面积公式进行求解即可.【详解】四边形ACDF是正方形,AC=FA,CAF=90,CAE+FAB=90,CEA=90,CAE+ACE=90,ACE=FAB,又AEC=FBA=90,AECFBA,CE=AB=4,S阴影=8,故答案为8.【点睛】本题考查了正方形的性质、全等三角形的判定与性质,三角形
19、面积等,求出CE=AB是解题的关键.17、1【解析】设反比例函数解析式为y=,根据反比例函数图象上点的坐标特征得到k=3(4)=2m,然后解关于m的方程即可【详解】解:设反比例函数解析式为y=,根据题意得k=3(4)=2m,解得m=1故答案为1考点:反比例函数图象上点的坐标特征18、x1【解析】分析:直接利用幂的乘方运算法则计算得出答案详解:(x4)2=x42=x1 故答案为x1点睛:本题主要考查了幂的乘方运算,正确掌握运算法则是解题的关键三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)x1=1+,x1=1;(1)x1=3,x1=【解析】(1)配方法
20、解;(1)因式分解法解.【详解】(1)x11x1=2,x11x+1=1+1,(x1)1=3,x1= ,x=1,x1=1,x1=1,(1)(x+1)1=4(x1)1(x+1)14(x1)1=2(x+1)11(x1)1=2(x+1)1(1x1)1=2(x+11x+1)(x+1+1x1)=2(x+3)(3x1)=2x1=3,x1=【点睛】考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程20、或【解析】把代入二元一次方程组得到关于a,b的方程组,经过整理,得到关于b的一元二次方程,解之即可得到b的值,把b的值代入一个关于a,b的二元一次方程,求出a的值,即可得到答案【详解】
21、把代入二元一次方程组得:,由得:a=1+b,把a=1+b代入,整理得:b2+b-2=0,解得:b= -2或b=1,把b= -2代入得:a+2=1,解得:a= -1,把b=1代入得:a-1=1,解得:a=2,即或【点睛】本题考查了二元一次方程组的解,正确掌握代入法是解题的关键21、(1)20;(2)作图见试题解析;(3)【解析】(1)由A类的学生数以及所占的百分比即可求得答案;(2)先求出C类的女生数、D类的男生数,继而可补全条形统计图;(3)首先根据题意列出表格,再利用表格求得所有等可能的结果与恰好选中一名男生和一名女生的情况,继而求得答案【详解】(1)根据题意得:王老师一共调查学生:(2+1
22、)15%=20(名);故答案为20;(2)C类女生:2025%2=3(名);D类男生:20(115%50%25%)1=1(名);如图:(3)列表如下:A类中的两名男生分别记为A1和A2,男A1男A2女A男D男A1男D男A2男D女A男D女D男A1女D男A2女D女A女D共有6种等可能的结果,其中,一男一女的有3种,所以所选两位同学恰好是一位男生和一位女生的概率为:22、(1),;(2)P,【解析】试题分析:(1)由点A在一次函数图象上,结合一次函数解析式可求出点A的坐标,再由点A的坐标利用待定系数法即可求出反比例函数解析式,联立两函数解析式成方程组,解方程组即可求出点B坐标;(2)作点B作关于x轴
23、的对称点D,交x轴于点C,连接AD,交x轴于点P,连接PB由点B、D的对称性结合点B的坐标找出点D的坐标,设直线AD的解析式为y=mx+n,结合点A、D的坐标利用待定系数法求出直线AD的解析式,令直线AD的解析式中y=0求出点P的坐标,再通过分割图形结合三角形的面积公式即可得出结论试题解析:(1)把点A(1,a)代入一次函数y=-x+4,得:a=-1+4,解得:a=3,点A的坐标为(1,3)把点A(1,3)代入反比例函数y=,得:3=k,反比例函数的表达式y=,联立两个函数关系式成方程组得:,解得:,或,点B的坐标为(3,1)(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点
24、P,此时PA+PB的值最小,连接PB,如图所示点B、D关于x轴对称,点B的坐标为(3,1),点D的坐标为(3,- 1)设直线AD的解析式为y=mx+n,把A,D两点代入得:,解得:,直线AD的解析式为y=-2x+1令y=-2x+1中y=0,则-2x+1=0,解得:x=,点P的坐标为(,0)SPAB=SABD-SPBD=BD(xB-xA)-BD(xB-xP)=1-(-1)(3-1)-1-(-1)(3-)=考点:1.反比例函数与一次函数的交点问题;2.待定系数法求一次函数解析式;3.轴对称-最短路线问题23、(1)购买一套茶艺耗材需要450元,购买一套陶艺耗材需要600元;(2)的值为95.【解析
25、】(1)设购买一套茶艺耗材需要元,则购买一套陶艺耗材需要元,根据购买茶艺耗材的数量是陶艺耗材数量的2倍列方程求解即可;(2)设今年原计划购买茶艺耗材和陶艺素材的数量均为,根据两种耗材的总价相等列方程求解即可.【详解】(1)设购买一套茶艺耗材需要元,则购买一套陶艺耗材需要元,根据题意,得.解方程,得.经检验,是原方程的解,且符合题意.答:购买一套茶艺耗材需要450元,购买一套陶艺耗材需要600元.(2)设今年原计划购买茶艺耗材和陶艺素材的数量均为,由题意得: 整理,得解方程,得,(舍去).的值为95.【点睛】本题考查了分式方程的应用及一元二次方程的应用,找出等量关系,列出方程是解答本题的关键,列
26、方程解决实际问题注意要检验与实际情况是否相符.24、答案见解析【解析】利用已知条件容易证明ADECFE,得出角相等,然后利用平行线的判定可以证明FCAB【详解】解:E是AC的中点,AE=CE在ADE与CFE中,AE=EC,AED=CEF,DE=EF,ADECFE(SAS),EAD=ECF,FCAB【点睛】本题主要考查了全等三角形的性质与判定,平行线的判定定理通过全等得角相等,然后得到两线平行时一种常用的方法,应注意掌握运用25、 (1)见解析:(2)见解析.【解析】试题分析:(1)根据角平分线的作法作出BAE的平分线AP即可;(2)先证明ABOCBO,得到AO=CO,AB=CB,再证明ABOA
27、DO,得到BO=DO由对角线互相平分的四边形是平行四边形及有一组邻边相等的平行四边形是菱形即可证明四边形ABCD是菱形试题解析:(1)如图所示:(2)如图:在ABO和CBO中,ABO=CBO,OB=OB, AOB=COB=90,ABOCBO(ASA),AO=CO,AB=CB在ABO和ADO中,OAB=OAD,OA=OA,AOB=AOD=90,ABOADO(ASA),BO=DOAO=CO,BO=DO,四边形ABCD是平行四边形,AB=CB,平行四边形ABCD是菱形考点:1菱形的判定;2作图基本作图26、 (1)见解析;(1)1【解析】(1)根据角平分线的作图可得;(1)由等腰三角形的三线合一,结
28、合E为AB边的中点证EF为ABD的中位线可得【详解】(1)如图,射线CF即为所求;(1)CAD=CDA,AC=DC,即CAD为等腰三角形;又CF是顶角ACD的平分线,CF是底边AD的中线,即F为AD的中点,E是AB的中点,EF为ABD的中位线,EF=BD=1【点睛】本题主要考查作图-基本作图和等腰三角形的性质、中位线定理,熟练掌握等腰三角形的性质、中位线定理是解题的关键27、(1)1130;(1)3140岁年龄段的满意人数为66人,图见解析;【解析】(1)取扇形统计图中所占百分比最大的年龄段即可;(1)先求出总体感到满意的总人数,然后减去其它年龄段的人数即可,再补全条形图.【详解】(1)由扇形统计图可得1130岁的人数所占百分比最大为39%,所以,人数最多的年龄段是1130岁;(1)根据题意,被调查的人中,总体印象感到满意的有:40083%=331人,3140岁年龄段的满意人数为:3315411653149=331116=66人,补全统计图如图【点睛】本题考点:条形统计图与扇形统计图.