安徽合肥市包河区2023年中考数学仿真试卷含解析.doc

上传人:lil****205 文档编号:87998930 上传时间:2023-04-19 格式:DOC 页数:19 大小:883.50KB
返回 下载 相关 举报
安徽合肥市包河区2023年中考数学仿真试卷含解析.doc_第1页
第1页 / 共19页
安徽合肥市包河区2023年中考数学仿真试卷含解析.doc_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《安徽合肥市包河区2023年中考数学仿真试卷含解析.doc》由会员分享,可在线阅读,更多相关《安徽合肥市包河区2023年中考数学仿真试卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(共10小题,每小题3分,共30分)1郑州某中学在备考2018河南中考体育的过程中抽取该校九年级20名男生进行立定跳远测试,以便知道下一阶段的体育训练,成绩如下所示:成绩(单位:米)2.102.202.252.302.352.402.452.50人数23245211则下列叙述正确的是()A这些运动员成绩的众数是 5B这些运动员成绩的中位数是

2、2.30C这些运动员的平均成绩是 2.25D这些运动员成绩的方差是 0.07252按如下方法,将ABC的三边缩小的原来的,如图,任取一点O,连AO、BO、CO,并取它们的中点D、E、F,得DEF,则下列说法正确的个数是()ABC与DEF是位似图形ABC与DEF是相似图形ABC与DEF的周长比为1:2ABC与DEF的面积比为4:1A1B2C3D43下列“数字图形”中,既是轴对称图形,又是中心对称图形的有()A1个 B2个 C3个 D4个4如图,矩形ABCD的顶点A、C分别在直线a、b上,且ab,1=60,则2的度数为( )A30B45C60D755下列分式是最简分式的是( )ABCD6小明早上从

3、家骑自行车去上学,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达学校,小明骑自行车所走的路程s(单位:千米)与他所用的时间t(单位:分钟)的关系如图所示,放学后,小明沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上学时一致,下列说法:小明家距学校4千米;小明上学所用的时间为12分钟;小明上坡的速度是0.5千米/分钟;小明放学回家所用时间为15分钟其中正确的个数是()A1个B2个C3个D4个7下列运算正确的是()Aa2+a2=a4B(a+b)2=a2+b2Ca6a2=a3D(2a3)2=4a68如图,某厂生产一种扇形折扇,OB=10cm,AB=20cm,其中裱花的部分是用纸糊的,

4、若扇子完全打开摊平时纸面面积为 cm2,则扇形圆心角的度数为()A120B140C150D1609下列计算正确的是()Aa2a3=a5 B2a+a2=3a3 C(a3)3=a6 Da2a=210已知点M、N在以AB为直径的圆O上,MON=x,MAN= y, 则点(x,y)一定在( )A抛物线上B过原点的直线上C双曲线上D以上说法都不对二、填空题(本大题共6个小题,每小题3分,共18分)11对于实数,我们用符号表示两数中较小的数,如.因此, _;若,则_12若不等式(a3)x1的解集为,则a的取值范围是_13如图,每个小正方形边长为1,则ABC边AC上的高BD的长为_14如图,在ABC中,ACB

5、=90,A=45,CDAB于点D,点P在线段DB上,若AP2-PB2=48,则PCD的面积为_.15如图,ABC中,A=80,B=40,BC的垂直平分线交AB于点D,联结DC如果AD=2,BD=6,那么ADC的周长为 16计算的结果为_三、解答题(共8题,共72分)17(8分)如图,ABC内接于O,CD是O的直径,AB与CD交于点E,点P是CD延长线上的一点,AP=AC,且B=2P(1)求证:PA是O的切线;(2)若PD=,求O的直径;(3)在(2)的条件下,若点B等分半圆CD,求DE的长18(8分)小明和小亮玩一个游戏:取三张大小、质地都相同的卡片,上面分别标有数字2、3、4(背面完全相同)

6、,现将标有数字的一面朝下小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张,计算小明和小亮抽得的两个数字之和请你用画树状图或列表的方法,求出这两数和为6的概率如果和为奇数,则小明胜;若和为偶数,则小亮胜你认为这个游戏规则对双方公平吗?做出判断,并说明理由19(8分)如图,点O是ABC的边AB上一点,O与边AC相切于点E,与边BC,AB分别相交于点D,F,且DE=EF求证:C=90;当BC=3,sinA=时,求AF的长20(8分)关于x的一元二次方程x2x(m+2)0有两个不相等的实数根求m的取值范围;若m为符合条件的最小整数,求此方程的根21(8分)先化简,再求值:,其中a=+

7、122(10分)武汉二中广雅中学为了进一步改进本校九年级数学教学,提高学生学习数学的兴趣校教务处在九年级所有班级中,每班随机抽取了6名学生,并对他们的数学学习情况进行了问卷调查:我们从所调查的题目中,特别把学生对数学学习喜欢程度的回答(喜欢程度分为:“非常喜欢”、“ 比较喜欢”、“ 不太喜欢”、“ 很不喜欢”,针对这个题目,问卷时要求每位被调查的学生必须从中选一项且只能选一项)结果进行了统计现将统计结果绘制成如下两幅不完整的统计图请你根据以上提供的信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)所抽取学生对数学学习喜欢程度的众数是,图中所在扇形对应的圆心角是;(3)若该校九年

8、级共有960名学生,请你估算该年级学生中对数学学习“不太喜欢”的有多少人?23(12分)下表中给出了变量x,与y=ax2,y=ax2+bx+c之间的部分对应值,(表格中的符号“”表示该项数据已丢失)x101ax21ax2+bx+c72(1)求抛物线y=ax2+bx+c的表达式(2)抛物线y=ax2+bx+c的顶点为D,与y轴的交点为A,点M是抛物线对称轴上一点,直线AM交对称轴右侧的抛物线于点B,当ADM与BDM的面积比为2:3时,求B点坐标;(3)在(2)的条件下,设线段BD与x轴交于点C,试写出BAD和DCO的数量关系,并说明理由24抛物线y=x2+bx+c(b,c均是常数)经过点O(0,

9、0),A(4,4),与x轴的另一交点为点B,且抛物线对称轴与线段OA交于点P(1)求该抛物线的解析式和顶点坐标;(2)过点P作x轴的平行线l,若点Q是直线上的动点,连接QB若点O关于直线QB的对称点为点C,当点C恰好在直线l上时,求点Q的坐标;若点O关于直线QB的对称点为点D,当线段AD的长最短时,求点Q的坐标(直接写出答案即可)参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】根据方差、平均数、中位数和众数的计算公式和定义分别对每一项进行分析,即可得出答案【详解】由表格中数据可得:A、这些运动员成绩的众数是2.35,错误;B、这些运动员成绩的中位数是2.30,正确;C、这些

10、运动员的平均成绩是 2.30,错误;D、这些运动员成绩的方差不是0.0725,错误;故选B【点睛】考查了方差、平均数、中位数和众数,熟练掌握定义和计算公式是本题的关键,平均数平均数表示一组数据的平均程度中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量2、C【解析】根据位似图形的性质,得出ABC与DEF是位似图形进而根据位似图形一定是相似图形得出 ABC与DEF是相似图形,再根据周长比等于位似比,以及根据面积比等于相似比的平方,即可得出答案【详解】解:根据位似性质得出ABC与DEF是位似图形,ABC与DEF是相似图形

11、,将ABC的三边缩小的原来的,ABC与DEF的周长比为2:1,故选项错误,根据面积比等于相似比的平方,ABC与DEF的面积比为4:1故选C【点睛】此题主要考查了位似图形的性质,中等难度,熟悉位似图形的性质是解决问题的关键3、C【解析】根据轴对称图形与中心对称图形的概念判断即可【详解】第一个图形不是轴对称图形,是中心对称图形;第二、三、四个图形是轴对称图形,也是中心对称图形;故选:C【点睛】本题考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合4、C【解析】试题分析:过点D作DEa,四边形ABCD是矩形

12、,BAD=ADC=90,3=901=9060=30,ab,DEab,4=3=30,2=5,2=9030=60故选C考点:1矩形;2平行线的性质.5、C【解析】解:A,故本选项错误;B,故本选项错误;C,不能约分,故本选项正确;D,故本选项错误故选C点睛:本题主要考查对分式的基本性质,约分,最简分式等知识点的理解和掌握,能根据分式的基本性质正确进行约分是解答此题的关键6、C【解析】从开始到A是平路,是1千米,用了3分钟,则从学校到家门口走平路仍用3分钟,根据图象求得上坡(AB段)、下坡(B到学校段)的路程与速度,利用路程除以速度求得每段所用的时间,相加即可求解【详解】解:小明家距学校4千米,正确

13、;小明上学所用的时间为12分钟,正确;小明上坡的速度是千米/分钟,错误;小明放学回家所用时间为3+2+1015分钟,正确;故选:C【点睛】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决需注意计算单位的统一7、D【解析】根据完全平方公式、合并同类项、同底数幂的除法、积的乘方,即可解答【详解】A、a2+a2=2a2,故错误;B、(a+b)2=a2+2ab+b2,故错误;C、a6a2=a4,故错误;D、(-2a3)2=4a6,正确;故选D【点睛】本题考查了完全平方公式、同底数幂的除法、积的乘方以及合并同类项,解决本题的关键

14、是熟记公式和法则8、C【解析】根据扇形的面积公式列方程即可得到结论【详解】OB=10cm,AB=20cm,OA=OB+AB=30cm,设扇形圆心角的度数为,纸面面积为 cm2,=150,故选:C【点睛】本题考了扇形面积的计算的应用,解题的关键是熟练掌握扇形面积计算公式:扇形的面积= .9、A【解析】直接利用合并同类项法则以及积的乘方运算法则、整式的除法运算法则分别计算得出答案【详解】A、a2a3=a5,故此选项正确;B、2a+a2,无法计算,故此选项错误;C、(-a3)3=-a9,故此选项错误;D、a2a=a,故此选项错误;故选A【点睛】此题主要考查了合并同类项以及积的乘方运算、整式的除法运算

15、,正确掌握相关运算法则是解题关键10、B【解析】由圆周角定理得出MON与MAN的关系,从而得出x与y的关系式,进而可得出答案.【详解】MON与MAN分别是弧MN所对的圆心角与圆周角,MAN=MON, ,点(x,y)一定在过原点的直线上.故选B.【点睛】本题考查了圆周角定理及正比例函数图像的性质,熟练掌握圆周角定理是解答本题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、 2或-1 【解析】,min,=;min(x1)2,x2=1,当x0.5时,(x1)2=1,x1=1,x1=1,x1=1,解得:x1=2,x2=0(不合题意,舍去),当x0.5时,x2=1,解得:x1=1(不合

16、题意,舍去),x2=1,12、【解析】(a3)x1的解集为x,不等式两边同时除以(a3)时不等号的方向改变,a30,a3.故答案为a3.点睛:本题考查了不等式的性质:在不等式的两边同时乘以或除以同一个负数不等号的方向改变.本题解不等号时方向改变,所以a-3小于0.13、【解析】试题分析:根据网格,利用勾股定理求出AC的长,AB的长,以及AB边上的高,利用三角形面积公式求出三角形ABC面积,而三角形ABC面积可以由AC与BD乘积的一半来求,利用面积法即可求出BD的长:根据勾股定理得:,由网格得:SABC=24=4,且SABC=ACBD=5BD,5BD=4,解得:BD=.考点:1.网格型问题;2.

17、勾股定理;3.三角形的面积14、6【解析】根据等角对等边,可得AC=BC,由等腰三角形的“三线合一”可得AD=BD=AB,利用直角三角形斜边的中线等于斜边的一半,可得CD=AB,由AP2-PB2=48,利用平方差公式及线段的和差公式将其变形可得CDPD=12,利用PCD的面积 =CDPD可得.【详解】解: 在ABC中,ACB=90,A=45,B=45,AC=BC,CDAB,AD=BD=CD=AB,AP2-PB2=48,(AP+PB)(AP-PB)=48,AB(AD+PD-BD+DP)=48,AB2PD=48,2CD2PD=48,CDPD=12, PCD的面积=CDPD=6.故答案为6.【点睛】

18、此题考查等腰三角形的性质,直角三角形的性质,解题关键在于利用等腰三角形的“三线合一15、1.【解析】试题分析:由BC的垂直平分线交AB于点D,可得CD=BD=6,又由等边对等角,可求得BCD的度数,继而求得ADC的度数,则可判定ACD是等腰三角形,继而求得答案试题解析:BC的垂直平分线交AB于点D,CD=BD=6,DCB=B=40,ADC=B+BCD=80,ADC=A=80,AC=CD=6,ADC的周长为:AD+DC+AC=2+6+6=1考点:1.线段垂直平分线的性质;2.等腰三角形的判定与性质16、2【解析】根据分式的运算法则即可得解.【详解】原式,故答案为:【点睛】本题主要考查了同分母的分

19、式减法,熟练掌握相关计算法则是解决本题的关键.三、解答题(共8题,共72分)17、(1)证明见解析;(2);(3);【解析】(1)连接OA、AD,如图,利用圆周角定理得到B=ADC,则可证明ADC=2ACP,利用CD为直径得到DAC=90,从而得到ADC=60,C=30,则AOP=60,于是可证明OAP=90,然后根据切线的判断定理得到结论;(2)利用P=30得到OP=2OA,则,从而得到O的直径;(3)作EHAD于H,如图,由点B等分半圆CD得到BAC=45,则DAE=45,设DH=x,则DE=2x,所以 然后求出x即可得到DE的长【详解】(1)证明:连接OA、AD,如图,B=2P,B=AD

20、C,ADC=2P,AP=AC,P=ACP,ADC=2ACP,CD为直径,DAC=90,ADC=60,C=30,ADO为等边三角形,AOP=60,而P=ACP=30,OAP=90,OAPA,PA是O的切线;(2)解:在RtOAP中,P=30,OP=2OA,O的直径为;(3)解:作EHAD于H,如图,点B等分半圆CD,BAC=45,DAE=45,设DH=x,在RtDHE中,DE=2x,在RtAHE中, 即解得 【点睛】本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线圆的切线垂直于经过切点的半径判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常

21、常“遇到切点连圆心得半径”也考查了圆周角定理18、 (1)列表见解析;(2)这个游戏规则对双方不公平【解析】(1)首先根据题意列表,然后根据表求得所有等可能的结果与两数和为6的情况,再利用概率公式求解即可;(2)分别求出和为奇数、和为偶数的概率,即可得出游戏的公平性【详解】(1)列表如下:由表可知,总共有9种结果,其中和为6的有3种,则这两数和为6的概率;(2)这个游戏规则对双方不公平理由如下:因为P(和为奇数),P(和为偶数),而,所以这个游戏规则对双方是不公平的【点睛】本题考查了列表法求概率注意树状图与列表法可以不重不漏的表示出所有等可能的情况用到的知识点为:概率=所求情况数与总情况数之比

22、19、(1)见解析(2)【解析】(1)连接OE,BE,因为DE=EF,所以=,从而易证OEB=DBE,所以OEBC,从可证明BCAC;(2)设O的半径为r,则AO=5r,在RtAOE中,sinA=从而可求出r的值【详解】解:(1)连接OE,BE,DE=EF,=OBE=DBEOE=OB,OEB=OBEOEB=DBE,OEBCO与边AC相切于点E,OEACBCACC=90(2)在ABC,C=90,BC=3,sinA=,AB=5,设O的半径为r,则AO=5r,在RtAOE中,sinA= 【点睛】本题考查圆的综合问题,涉及平行线的判定与性质,锐角三角函数,解方程等知识,综合程度较高,需要学生灵活运用所

23、学知识20、(1)m;(2)x1=0,x2=1【解析】解答本题的关键是是掌握好一元二次方程的根的判别式(1)求出5+4m0即可求出m的取值范围;(2)因为m=1为符合条件的最小整数,把m=1代入原方程求解即可【详解】解:(1)1+4(m2)9+4m0(2)为符合条件的最小整数,m=2原方程变为x10,x21考点:1解一元二次方程;2根的判别式21、【解析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a的值代入计算即可求出值【详解】原式=,当a=+1时,原式=【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.

24、22、(1)答案见解析;(2)B,54;(3)240人【解析】(1)根据D程度的人数和所占抽查总人数的百分率即可求出抽查总人数,然后利用总人数减去A、B、D程度的人数即可求出C程度的人数,然后分别计算出各程度人数占抽查总人数的百分率,从而补全统计图即可;(2)根据众数的定义即可得出结论,然后利用360乘A程度的人数所占抽查总人数的百分率即可得出结论;(3)利用960乘C程度的人数所占抽查总人数的百分率即可【详解】解:(1)被调查的学生总人数为人,C程度的人数为人,则的百分比为、的百分比为、的百分比为,补全图形如下:(2)所抽取学生对数学学习喜欢程度的众数是、图中所在扇形对应的圆心角是故答案为:

25、;(3)该年级学生中对数学学习“不太喜欢”的有人答:该年级学生中对数学学习“不太喜欢”的有240人【点睛】此题考查的是条形统计图和扇形统计图,结合条形统计图和扇形统计图得出有用信息是解决此题的关键23、 (1) y=x24x+2;(2) 点B的坐标为(5,7);(1)BAD和DCO互补,理由详见解析.【解析】(1)由(1,1)在抛物线y=ax2上可求出a值,再由(1,7)、(0,2)在抛物线y=x2+bx+c上可求出b、c的值,此题得解;(2)由ADM和BDM同底可得出两三角形的面积比等于高的比,结合点A的坐标即可求出点B的横坐标,再利用二次函数图象上点的坐标特征即可求出点B的坐标;(1)利用

26、二次函数图象上点的坐标特征可求出A、D的坐标,过点A作ANx轴,交BD于点N,则AND=DCO,根据点B、D的坐标利用待定系数法可求出直线BD的解析式,利用一次函数图象上点的坐标特征可求出点N的坐标,利用两点间的距离公式可求出BA、BD、BN的长度,由三者间的关系结合ABD=NBA,可证出ABDNBA,根据相似三角形的性质可得出ANB=DAB,再由ANB+AND=120可得出DAB+DCO=120,即BAD和DCO互补【详解】(1)当x=1时,y=ax2=1,解得:a=1;将(1,7)、(0,2)代入y=x2+bx+c,得:,解得:,抛物线的表达式为y=x24x+2;(2)ADM和BDM同底,

27、且ADM与BDM的面积比为2:1,点A到抛物线的距离与点B到抛物线的距离比为2:1抛物线y=x24x+2的对称轴为直线x=2,点A的横坐标为0,点B到抛物线的距离为1,点B的横坐标为1+2=5,点B的坐标为(5,7)(1)BAD和DCO互补,理由如下:当x=0时,y=x24x+2=2,点A的坐标为(0,2),y=x24x+2=(x2)22,点D的坐标为(2,2)过点A作ANx轴,交BD于点N,则AND=DCO,如图所示设直线BD的表达式为y=mx+n(m0),将B(5,7)、D(2,2)代入y=mx+n,解得:,直线BD的表达式为y=1x2当y=2时,有1x2=2,解得:x=,点N的坐标为(,

28、2)A(0,2),B(5,7),D(2,2),AB=5,BD=1,BN=,=又ABD=NBA,ABDNBA,ANB=DABANB+AND=120,DAB+DCO=120,BAD和DCO互补【点睛】本题是二次函数综合题,考查了待定系数法求二次函数和一次函数解析式、等底三角形面积的关系、二次函数的图像与性质、相似三角形的判定与性质.熟练掌握待定系数法是解(1)的关键;熟练掌握等底三角形面积的关系式解(2)的关键;证明ABDNBA是解(1)的关键.24、(1)y=(x)2+;(,);(2)(,)或(,);(0,);【解析】1)把0(0,0),A(4,4v3)的坐标代入y=x2+bx+c,转化为解方程

29、组即可.(2)先求出直线OA的解析式,点B坐标,抛物线的对称轴即可解决问题.(3)如图1中,点O关于直线BQ的对称点为点C,当点C恰好在直线l上时,首先证明四边形BOQC是菱形,设Q(m,),根据OQ=OB=5,可得方程,解方程即可解决问题.如图2中,由题意点D在以B为圆心5为半径的OB上运动,当A,D、B共线时,线段AD最小,设OD与BQ交于点H.先求出D、H两点坐标,再求出直线BH的解析式即可解决问题.【详解】(1)把O(0,0),A(4,4)的坐标代入y=x2+bx+c,得,解得,抛物线的解析式为y=x2+5x=(x)2+所以抛物线的顶点坐标为(,);(2)由题意B(5,0),A(4,4

30、),直线OA的解析式为y=x,AB=7,抛物线的对称轴x=,P(,)如图1中,点O关于直线BQ的对称点为点C,当点C恰好在直线l上时,QCOB,CQB=QBO=QBC,CQ=BC=OB=5,四边形BOQC是平行四边形,BO=BC,四边形BOQC是菱形,设Q(m,),OQ=OB=5,m2+()2=52,m=,点Q坐标为(,)或(,);如图2中,由题意点D在以B为圆心5为半径的B上运动,当A、D、B共线时,线段AD最小,设OD与BQ交于点HAB=7,BD=5,AD=2,D(,),OH=HD,H(,),直线BH的解析式为y=x+,当y=时,x=0,Q(0,)【点睛】本题二次函数与一次函数的关系、几何动态问题、最值问题、作辅助圆解决问题,难度较大,需积极思考,灵活应对

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁