《山东南山集团东海外国语学校2022-2023学年中考一模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《山东南山集团东海外国语学校2022-2023学年中考一模数学试题含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1在0,3,0.6,这5个实数中,无理数的个数为()A1个B2个C3个D4个2如图,A,B是半径为1的O上两点,且OAOB点P从A出发,在O上以每秒一个单位长度的速度匀速运动,回到点A运动结束. 设运动时间为x,弦BP的长度为y,那么下面图象中可能表
2、示y与x的函数关系的是ABC或D或3明明和亮亮都在同一直道A、B两地间做匀速往返走锻炼明明的速度小于亮亮的速度忽略掉头等时间明明从A地出发,同时亮亮从B地出发图中的折线段表示从开始到第二次相遇止,两人之间的距离米与行走时间分的函数关系的图象,则A明明的速度是80米分B第二次相遇时距离B地800米C出发25分时两人第一次相遇D出发35分时两人相距2000米4如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A处,点B落在点B处,若2=40,则图中1的度数为( )A115B120C130D1405关于x的不等式组的所有整数解是()A0,1B1,0,1C0,1,2D2,0,1,26下列命
3、题是真命题的是()A一组对边平行,另一组对边相等的四边形是平行四边形B两条对角线相等的四边形是平行四边形C两组对边分别相等的四边形是平行四边形D平行四边形既是中心对称图形,又是轴对称图形7如图,直线ABCD,则下列结论正确的是()A1=2B3=4C1+3=180D3+4=1808如图,在矩形ABCD中,AB=3,AD=4,点E在边BC上,若AE平分BED,则BE的长为()ABCD49下列长度的三条线段能组成三角形的是A2,3,5B7,4,2C3,4,8D3,3,410下列运算中,正确的是()A(a3)2=a5B(x)2x=xCa3(a)2=a5D(2x2)3=8x6二、填空题(本大题共6个小题
4、,每小题3分,共18分)11如图,在ABCD中,AB=6cm,AD=9cm,BAD的平分线交BC于点E,交DC的延长线于点F,BGAE,垂足为G,BG=cm,则EFCF的长为 cm12如图,在正五边形ABCDE中,AC与BE相交于点F,则AFE的度数为_13如图,在平面直角坐标系中,函数y=(k0)的图象经过点A(1,2)、B两点,过点A作x轴的垂线,垂足为C,连接AB、BC若三角形ABC的面积为3,则点B的坐标为_14如果一个正多边形的中心角为72,那么这个正多边形的边数是 15如图,在等腰RtABC中,BAC90,ABAC,BC4,点D是AC边上一动点,连接BD,以AD为直径的圆交BD于点
5、E,则线段CE长度的最小值为_16如图,ABC与DEF位似,点O为位似中心,若AC3DF,则OE:EB_三、解答题(共8题,共72分)17(8分) “低碳生活,绿色出行”是我们倡导的一种生活方式,有关部门抽样调查了某单位员工上下班的交通方式,绘制了两幅统计图:(1)样本中的总人数为人;扇形统计十图中“骑自行车”所在扇形的圆心角为度;(2)补全条形统计图;(3)该单位共有1000人,积极践行这种生活方式,越来越多的人上下班由开私家车改为骑自行车若步行,坐公交车上下班的人数保持不变,问原来开私家车的人中至少有多少人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数?18(8分)如图,ABC中,
6、点D在AB上,ACD=ABC,若AD=2,AB=6,求AC的长19(8分)某校师生到距学校20千米的公路旁植树,甲班师生骑自行车先走,45分钟后,乙班师生乘汽车出发,结果两班师生同时到达,已知汽车的速度是自行车速度的2.5倍,求两种车的速度各是多少?20(8分)如图,O是ABC的外接圆,BC为O的直径,点E为ABC的内心,连接AE并延长交O于D点,连接BD并延长至F,使得BD=DF,连接CF、BE(1)求证:DB=DE;(2)求证:直线CF为O的切线;(3)若CF=4,求图中阴影部分的面积21(8分)某农场用2台大收割机和5台小收割机同时工作2小时共收割小麦3.6公顷,3台大收割机和2台小收割
7、机同时工作5小时共收割小麦8公顷.1台大收割机和1台小收割机每小时各收割小麦多少公顷?22(10分)如图,ABCD,E、F分别为AB、CD上的点,且ECBF,连接AD,分别与EC、BF相交与点G、H,若ABCD,求证:AGDH23(12分)据调查,超速行驶是引发交通事故的主要原因之一小强用所学知识对一条笔直公路上的车辆进行测速,如图所示,观测点C到公路的距离CD=200m,检测路段的起点A位于点C的南偏东60方向上,终点B位于点C的南偏东45方向上一辆轿车由东向西匀速行驶,测得此车由A处行驶到B处的时间为10s问此车是否超过了该路段16m/s的限制速度?(观测点C离地面的距离忽略不计,参考数据
8、:1.41,1.73)24现在,某商场进行促销活动,出售一种优惠购物卡(注:此卡只作为购物优惠凭证不能顶替货款),花300元买这种卡后,凭卡可在这家商场按标价的8折购物顾客购买多少元金额的商品时,买卡与不买卡花钱相等?在什么情况下购物合算?小张要买一台标价为3500元的冰箱,如何购买合算?小张能节省多少元钱?小张按合算的方案,把这台冰箱买下,如果某商场还能盈利25%,这台冰箱的进价是多少元?参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】分别根据无理数、有理数的定义逐一判断即可得【详解】解:在0,-3,0.6,这5个实数中,无理数有、这2个,故选B【点睛】此题主要考查了无理
9、数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数如,0.8080080008(每两个8之间依次多1个0)等形式2、D【解析】分两种情形讨论当点P顺时针旋转时,图象是,当点P逆时针旋转时,图象是,由此即可解决问题【详解】解:当点P顺时针旋转时,图象是,当点P逆时针旋转时,图象是故选D3、B【解析】C、由二者第二次相遇的时间结合两次相遇分别走过的路程,即可得出第一次相遇的时间,进而得出C选项错误;A、当时,出现拐点,显然此时亮亮到达A地,利用速度路程时间可求出亮亮的速度及两人的速度和,二者做差后可得出明明的速度,进而得出A选项错误;B、根据第二次相遇时距离B地的距离明明的速度第二
10、次相遇的时间、B两地间的距离,即可求出第二次相遇时距离B地800米,B选项正确;D、观察函数图象,可知:出发35分钟时亮亮到达A地,根据出发35分钟时两人间的距离明明的速度出发时间,即可求出出发35分钟时两人间的距离为2100米,D选项错误【详解】解:第一次相遇两人共走了2800米,第二次相遇两人共走了米,且二者速度不变,出发20分时两人第一次相遇,C选项错误;亮亮的速度为米分,两人的速度和为米分,明明的速度为米分,A选项错误;第二次相遇时距离B地距离为米,B选项正确;出发35分钟时两人间的距离为米,D选项错误故选:B【点睛】本题考查了一次函数的应用,观察函数图象,逐一分析四个选项的正误是解题
11、的关键4、A【解析】解:把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A处,点B落在点B处,BFE=EFB,B=B=902=40,CFB=50,1+EFBCFB=180,即1+150=180,解得:1=115,故选A5、B【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,据此即可得出答案【详解】解不等式2x4,得:x2,解不等式3x51,得:x2,则不等式组的解集为2x2,所以不等式组的整数解为1、0、1,故选:B【点睛】考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间
12、找;大大小小找不到”的原则是解答此题的关键6、C【解析】根据平行四边形的五种判定定理(平行四边形的判定方法:两组对边分别平行的四边形;两组对角分别相等的四边形;两组对边分别相等的四边形;一组对边平行且相等的四边形;对角线互相平分的四边形)和平行四边形的性质进行判断【详解】A、一组对边平行,另一组对边相等的四边形不是平行四边形;故本选项错误;B、两条对角线互相平分的四边形是平行四边形故本选项错误;C、两组对边分别相等的四边形是平行四边形故本选项正确;D、平行四边形不是轴对称图形,是中心对称图形故本选项错误;故选:C【点睛】考查了平行四边形的判定与性质平行四边形的判定方法共有五种,应用时要认真领会
13、它们之间的联系与区别,同时要根据条件合理、灵活地选择方法7、D【解析】分析:依据ABCD,可得3+5=180,再根据5=4,即可得出3+4=180详解:如图,ABCD,3+5=180,又5=4,3+4=180,故选D点睛:本题考查了平行线的性质,解题时注意:两直线平行,同旁内角互补8、D【解析】首先根据矩形的性质,可知AB=CD=3,AD=BC=4,D=90,ADBC,然后根据AE平分BED求得ED=AD;利用勾股定理求得EC的长,进而求得BE的长.【详解】四边形ABCD是矩形,AB=CD=3,AD=BC=4,D=90,ADBC,DAE=BEA,AE是DEB的平分线,BEA=AED,DAE=A
14、ED,DE=AD=4,再RtDEC中,EC=,BE=BC-EC=4-.故答案选D.【点睛】本题考查了矩形的性质与角平分线的性质以及勾股定理的应用,解题的关键是熟练的掌握矩形的性质与角平分线的性质以及勾股定理的应用.9、D【解析】试题解析:A3+2=5,2,3,5不能组成三角形,故A错误;B4+27,7,4,2不能组成三角形,故B错误;C4+38,3,4,8不能组成三角形,故C错误;D3+34,3,3,4能组成三角形,故D正确;故选D10、D【解析】根据同底数幂的除法、乘法的运算方法,幂的乘方与积的乘方的运算方法,以及单项式乘单项式的方法,逐项判定即可【详解】(a3)2=a6,选项A不符合题意;
15、(-x)2x=x,选项B不符合题意;a3(-a)2=a5,选项C不符合题意;(-2x2)3=-8x6,选项D符合题意故选D【点睛】此题主要考查了同底数幂的除法、乘法的运算方法,幂的乘方与积的乘方的运算方法,以及单项式乘单项式的方法,要熟练掌握二、填空题(本大题共6个小题,每小题3分,共18分)11、5【解析】分析:AF是BAD的平分线,BAF=FADABCD中,ABDC,FAD =AEBBAF=AEBBAE是等腰三角形,即BE=AB=6cm同理可证CFE也是等腰三角形,且BAECFEBC= AD=9cm,CE=CF=3cmBAE和CFE的相似比是2:1BGAE, BG=cm,由勾股定理得EG=
16、2cmAE=4cmEF=2cmEFCF=5cm12、72【解析】首先根据正五边形的性质得到AB=BC=AE,ABC=BAE=108,然后利用三角形内角和定理得BAC=BCA=ABE=AEB=(180108)2=36,最后利用三角形的外角的性质得到AFE=BAC+ABE=72【详解】五边形ABCDE为正五边形,AB=BC=AE,ABC=BAE=108,BAC=BCA=ABE=AEB=(180108)2=36,AFE=BAC+ABE=72,故答案为72【点睛】本题考查的是正多边形和圆,利用数形结合求解是解答此题的关键13、(4,)【解析】由于函数y=(x0常数k0)的图象经过点A(1,1),把(1
17、,1)代入解析式求出k=1,然后得到AC=1设B点的横坐标是m,则AC边上的高是(m-1),根据三角形的面积公式得到关于m的方程,从而求出,然后把m的值代入y=,即可求得B的纵坐标,最后就求出了点B的坐标【详解】函数y=(x0、常数k0)的图象经过点A(1,1),把(1,1)代入解析式得到1=,k=1,设B点的横坐标是m,则AC边上的高是(m-1),AC=1根据三角形的面积公式得到1(m-1)=3,m=4,把m=4代入y=,B的纵坐标是,点B的坐标是(4,)故答案为(4,)【点睛】解答本题的关键是根据已知坐标系中点的坐标,可以表示图形中线段的长度根据三角形的面积公式即可解答14、5【解析】试题
18、分析:中心角的度数=,考点:正多边形中心角的概念15、2【解析】连结AE,如图1,先根据等腰直角三角形的性质得到AB=AC=4,再根据圆周角定理,由AD为直径得到AED=90,接着由AEB=90得到点E在以AB为直径的 O上,于是当点O、E、C共线时,CE最小,如图2,在RtAOC中利用勾股定理计算出OC=2,从而得到CE的最小值为22.【详解】连结AE,如图1,BAC=90,AB=AC,BC=,AB=AC=4,AD为直径,AED=90,AEB=90,点E在以AB为直径的O上,O的半径为2,当点O、E. C共线时,CE最小,如图2在RtAOC中,OA=2,AC=4,OC=,CE=OCOE=22
19、,即线段CE长度的最小值为22.故答案为:22.【点睛】此题考查等腰直角三角形的性质,圆周角定理,勾股定理,解题关键在于结合实际运用圆的相关性质.16、1:2【解析】ABC与DEF是位似三角形,则DFAC,EFBC,先证明OACODF,利用相似比求得AC3DF,所以可求OE:OBDF:AC1:3,据此可得答案【详解】解:ABC与DEF是位似三角形,DFAC,EFBCOACODF,OE:OBOF:OCOF:OCDF:ACAC3DFOE:OBDF:AC1:3,则OE:EB1:2故答案为:1:2【点睛】本题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比,位似图形的对应顶点的连线平行或共
20、线三、解答题(共8题,共72分)17、 (1) 80、72;(2) 16人;(3) 50人【解析】(1) 用步行人数除以其所占的百分比即可得到样本总人数:810%=80(人);用总人数乘以开私家车的所占百分比即可求出,即 m=8025%=20;用3600乘以骑自行车所占的百分比即可求出其所在扇形的圆心角:360(1-10%-25%-45%)=.(2) 根据扇形统计图算出骑自行车的所占百分比, 再用总人数乘以该百分比即可求出骑自行车的人数, 补全条形图即可(3) 依题意设原来开私家车的人中有x人改为骑自行车, 用x分别表示改变出行方式后的骑自行车和开私家车的人数, 根据题意列出一元一次不等式,
21、解不等式即可【详解】解:(1)样本中的总人数为810%=80人,骑自行车的百分比为1(10%+25%+45%)=20%,扇形统计十图中“骑自行车”所在扇形的圆心角为36020%=72(2)骑自行车的人数为8020%=16人,补全图形如下:(3)设原来开私家车的人中有x人改骑自行车,由题意,得:1000(110%25%45%)+x100025%x,解得:x50,原来开私家车的人中至少有50人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数【点睛】本题主要考查统计图表和一元一次不等式的应用。18、【解析】试题分析:可证明ACDABC,则,即得出AC2=ADAB,从而得出AC的长试题解析:AC
22、D=ABC,A=A, ACDABC ,AD=2,AB=6,AC=考点:相似三角形的判定与性质19、自行车速度为16千米/小时,汽车速度为40千米/小时.【解析】设自行车速度为x千米/小时,则汽车速度为2.5x千米/小时,根据甲班师生骑自行车先走,45分钟后,乙班师生乘汽车出发,结果同时到达,即可列方程求解.【详解】设自行车速度为x千米/小时,则汽车速度为2.5x千米/小时,由题意得,解得x=16,经检验x=16适合题意,2.5x=40,答:自行车速度为16千米/小时,汽车速度为40千米/小时.20、(1)证明见解析;(2)证明见解析;(3)【解析】(1)欲证明DB=DE.,只要证明DBE=DE
23、B;(2)欲证明CF是O的切线.,只要证明BCCF即可;(3)根据S阴影部分S扇形SOBD计算即可【详解】解:(1)E是ABC的内心,BAE=CAE,EBA=EBC,BED=BAE+EBA,DBE=EBC+DBC,DBC=EAC,DBE=DEB,DB=DE(2)连接CDDA平分BAC,DAB=DAC,BD=CD,又BD=DF,CD=DB=DF,BCCF,CF是O的切线(3)连接OD O、D是BC、BF的中点,CF4, OD2. CF是O的切线,BOD为等腰直角三角形 S阴影部分S扇形SOBD 【点睛】本题考查数学圆的综合题,考查了圆的切线的证明,扇形的面积公式等,注意切线的证明方法,是高频考点
24、21、1台大收割机和1台小收割机每小时各收割小麦0.4hm2和0.2hm2.【解析】此题可设1台大收割机和1台小收割机每小时各收割小麦x公顷和y公顷,根据题中的等量关系列出二元一次方程组解答即可【详解】设1台大收割机和1台小收割机每小时各收割小麦x公顷和y公顷根据题意可得解得答:每台大小收割机每小时分别收割0.4公顷和0.2公顷.【点睛】此题主要考查了二元一次方程组的实际应用,解题关键在于弄清题意,找到合适的等量关系22、证明见解析.【解析】【分析】利用AAS先证明ABHDCG,根据全等三角形的性质可得AH=DG,再根据AHAGGH,DGDHGH即可证得AGHD.【详解】ABCD,AD,CEB
25、F,AHBDGC,在ABH和DCG中,ABHDCG(AAS),AHDG,AHAGGH,DGDHGH,AGHD.【点睛】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.23、此车没有超过了该路段16m/s的限制速度【解析】分析:根据直角三角形的性质和三角函数得出DB,DA,进而解答即可详解:由题意得:DCA=60,DCB=45,在RtCDB中,tanDCB=,解得:DB=200,在RtCDA中,tanDCA=,解得:DA=200,AB=DADB=200200146米,轿车速度,答:此车没有超过了该路段16m/s的限制速度点睛:本题考查了解直角三角形的应用方向角问题,
26、解答本题的关键是利用三角函数求出AD与BD的长度,难度一般24、(1)当顾客消费等于1500元时买卡与不买卡花钱相等;当顾客消费大于1500元时买卡合算;(2)小张买卡合算,能节省400元钱;(3)这台冰箱的进价是2480元【解析】(1)设顾客购买x元金额的商品时,买卡与不买卡花钱相等,根据花300元买这种卡后,凭卡可在这家商场按标价的8折购物,列出方程,解方程即可;根据x的值说明在什么情况下购物合算(2)根据(1)中所求即可得出怎样购买合算,以及节省的钱数;(3)设进价为y元,根据售价-进价=利润,则可得出方程即可【详解】解:设顾客购买x元金额的商品时,买卡与不买卡花钱相等根据题意,得300+0.8xx,解得x1500,所以当顾客消费等于1500元时,买卡与不买卡花钱相等;当顾客消费少于1500元时,300+0.8xx不买卡合算;当顾客消费大于1500元时,300+0.8xx买卡合算;(2)小张买卡合算,3500(300+35000.8)400,所以,小张能节省400元钱;(3)设进价为y元,根据题意,得(300+35000.8)y25%y,解得 y2480答:这台冰箱的进价是2480元【点睛】此题主要考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键