天津市静海县第一中学2023届高考仿真卷数学试题含解析.doc

上传人:lil****205 文档编号:87998451 上传时间:2023-04-19 格式:DOC 页数:18 大小:1.70MB
返回 下载 相关 举报
天津市静海县第一中学2023届高考仿真卷数学试题含解析.doc_第1页
第1页 / 共18页
天津市静海县第一中学2023届高考仿真卷数学试题含解析.doc_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《天津市静海县第一中学2023届高考仿真卷数学试题含解析.doc》由会员分享,可在线阅读,更多相关《天津市静海县第一中学2023届高考仿真卷数学试题含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1将函数的图象沿轴向左平移个单位长度后,得到函数的图象,则“”是“是偶函数”的( )A充分不必要条件B必要不充分条件C充分必要条件D既不充分也不必要条件2已知复数,满足,则( )A1BCD53

2、已知直线过双曲线C:的左焦点F,且与双曲线C在第二象限交于点A,若(O为坐标原点),则双曲线C的离心率为ABCD4已知是虚数单位,若,则实数( )A或B-1或1C1D5某校为提高新入聘教师的教学水平,实行“老带新”的师徒结对指导形式,要求每位老教师都有徒弟,每位新教师都有一位老教师指导,现选出3位老教师负责指导5位新入聘教师,则不同的师徒结对方式共有( )种.A360B240C150D1206一个圆锥的底面和一个半球底面完全重合,如果圆锥的表面积与半球的表面积相等,那么这个圆锥轴截面底角的大小是( )ABCD7在复平面内,复数(为虚数单位)对应的点位于( )A第一象限B第二象限C第三象限D第四

3、象限8某单位去年的开支分布的折线图如图1所示,在这一年中的水、电、交通开支(单位:万元)如图2所示,则该单位去年的水费开支占总开支的百分比为( )ABCD9若函数的图象如图所示,则的解析式可能是( )ABCD10已知复数满足,其中为虚数单位,则( )ABCD11已知,满足约束条件,则的最大值为ABCD12根据如图所示的程序框图,当输入的值为3时,输出的值等于( )A1BCD二、填空题:本题共4小题,每小题5分,共20分。13双曲线的离心率为_14已知关于的方程在区间上恰有两个解,则实数的取值范围是_15在中,角,所对的边分别边,且,设角的角平分线交于点,则的值最小时,_.16已知抛物线,点为抛

4、物线上一动点,过点作圆的切线,切点分别为,则线段长度的取值范围为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在中,角、的对边分别为、,且.(1)若,求的值;(2)若,求的值.18(12分)设都是正数,且,求证:19(12分)已知矩形中,E,F分别为,的中点.沿将矩形折起,使,如图所示.设P、Q分别为线段,的中点,连接.(1)求证:平面;(2)求二面角的余弦值.20(12分)记为数列的前项和,N.(1)求;(2)令,证明数列是等比数列,并求其前项和.21(12分)设椭圆的右焦点为,过的直线与交于两点,点的坐标为(1)当直线的倾斜角为时,求线段AB的中点的横坐标

5、;(2)设点A关于轴的对称点为C,求证:M,B,C三点共线;(3)设过点M的直线交椭圆于两点,若椭圆上存在点P,使得(其中O为坐标原点),求实数的取值范围22(10分)如图,四棱锥,侧面是边长为2的正三角形,且与底面垂直,底面是的菱形, 为棱上的动点,且.(I)求证:为直角三角形;(II)试确定的值,使得二面角的平面角余弦值为.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】求出函数的解析式,由函数为偶函数得出的表达式,然后利用充分条件和必要条件的定义判断即可.【详解】将函数的图象沿轴向左平移个单位长度,得到的图象对应

6、函数的解析式为,若函数为偶函数,则,解得,当时,.因此,“”是“是偶函数”的充分不必要条件.故选:A.【点睛】本题考查充分不必要条件的判断,同时也考查了利用图象变换求三角函数解析式以及利用三角函数的奇偶性求参数,考查运算求解能力与推理能力,属于中等题.2、A【解析】首先根据复数代数形式的除法运算求出,求出的模即可【详解】解:,故选:A【点睛】本题考查了复数求模问题,考查复数的除法运算,属于基础题3、B【解析】直线的倾斜角为,易得设双曲线C的右焦点为E,可得中,则,所以双曲线C的离心率为.故选B4、B【解析】由题意得,然后求解即可【详解】,.又,.【点睛】本题考查复数的运算,属于基础题5、C【解

7、析】可分成两类,一类是3个新教师与一个老教师结对,其他一新一老结对,第二类两个老教师各带两个新教师,一个老教师带一个新教师,分别计算后相加即可【详解】分成两类,一类是3个新教师与同一个老教师结对,有种结对结对方式,第二类两个老教师各带两个新教师,有共有结对方式6090150种故选:C【点睛】本题考查排列组合的综合应用解题关键确定怎样完成新老教师结对这个事情,是先分类还是先分步,确定方法后再计数本题中有一个平均分组问题计数时容易出错两组中每组中人数都是2,因此方法数为6、D【解析】设圆锥的母线长为l,底面半径为R,再表达圆锥表面积与球的表面积公式,进而求得即可得圆锥轴截面底角的大小.【详解】设圆

8、锥的母线长为l,底面半径为R,则有,解得,所以圆锥轴截面底角的余弦值是,底角大小为.故选:D【点睛】本题考查圆锥的表面积和球的表面积公式,属于基础题.7、C【解析】化简复数为、的形式,可以确定对应的点位于的象限【详解】解:复数故复数对应的坐标为位于第三象限故选:【点睛】本题考查复数代数形式的运算,复数和复平面内点的对应关系,属于基础题8、A【解析】由折线图找出水、电、交通开支占总开支的比例,再计算出水费开支占水、电、交通开支的比例,相乘即可求出水费开支占总开支的百分比.【详解】水费开支占总开支的百分比为.故选:A【点睛】本题考查折线图与柱形图,属于基础题.9、A【解析】由函数性质,结合特殊值验

9、证,通过排除法求得结果.【详解】对于选项B, 为 奇函数可判断B错误;对于选项C,当时, ,可判断C错误;对于选项D, ,可知函数在第一象限的图象无增区间,故D错误;故选:A.【点睛】本题考查已知函数的图象判断解析式问题,通过函数性质及特殊值利用排除法是解决本题的关键,难度一般.10、A【解析】先化简求出,即可求得答案.【详解】因为,所以所以故选:A【点睛】此题考查复数的基本运算,注意计算的准确度,属于简单题目.11、D【解析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合即可得到结论【详解】作出不等式组表示的平面区域如下图中阴影部分所示,等价于,作直线,向上平移,易知当直线

10、经过点时最大,所以,故选D【点睛】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法12、C【解析】根据程序图,当x0继续运行,x=1-2=-10,程序运行结束,得,故选C【点睛】本题考查程序框图,是基础题二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】 14、【解析】先换元,令,将原方程转化为,利用参变分离法转化为研究两函数的图像交点,观察图像,即可求出【详解】因为关于的方程在区间上恰有两个解,令,所以方程在 上只有一解,即有 ,直线与 在的图像有一个交点,由图可知,实数的取值范围是,但是当时,还有一个根,所以此时共有3个根.综

11、上实数的取值范围是.【点睛】本题主要考查学生运用转化与化归思想的能力,方程有解问题转化成两函数的图像有交点问题,是常见的转化方式15、【解析】根据题意,利用余弦定理和基本不等式得出,再利用正弦定理,即可得出.【详解】因为,则,由余弦定理得:,当且仅当时取等号,又因为,所以.故答案为:.【点睛】本题考查余弦定理和正弦定理的应用,以及基本不等式求最值,考查计算能力.16、【解析】连接,易得,可得四边形的面积为,从而可得,进而求出的取值范围,可求得的范围.【详解】如图,连接,易得,所以四边形的面积为,且四边形的面积为三角形面积的两倍,所以,所以,当最小时,最小,设点,则,所以当时,则,当点的横坐标时

12、,此时,因为随着的增大而增大,所以的取值范围为.故答案为:.【点睛】本题考查直线与圆的位置关系的应用,考查抛物线上的动点到定点的距离的求法,考查学生的计算求解能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)利用余弦定理得出关于的二次方程,结合,可求出的值;(2)利用两角和的余弦公式以及诱导公式可求出的值,利用同角三角函数的基本关系求出的值,然后利用二倍角的正切公式可求出的值.【详解】(1)在中,由余弦定理得,即, 解得或(舍),所以;(2)由及得, 所以,又因为,所以,从而,所以.【点睛】本题考查利用余弦定理解三角形,同时也考

13、查了两角和的余弦公式、同角三角函数的基本关系以及二倍角公式求值,考查计算能力,属于中等题.18、证明见解析【解析】利用比较法进行证明:把代数式展开、作差、化简可得,可证得成立,同理可证明,由此不等式得证.【详解】证明:因为,,所以 , 成立,又都是正数,同理,【点睛】本题考查利用比较法证明不等式;考查学生的逻辑推理能力和运算求解能力;把差变形为因式乘积的形式是证明本题的关键;属于中档题。19、(1)证明见解析(2)【解析】(1) 取中点R,连接,,可知中,且,由Q是中点,可得则有且,即四边形是平行四边形,则有,即证得平面. (2) 建立空间直角坐标系,求得半平面的法向量: ,然后利用空间向量的

14、相关结论可求得二面角的余弦值.【详解】(1)取中点R,连接,则在中,且,又Q是中点,所以,而且,所以,所以四边形是平行四边形,所以,又平面,平面,所以平面.(2)在平面内作交于点G,以E为原点,分别为x,y,x轴,建立如图所示的空间直角坐标系,则各点坐标为,所以,设平面的一个法向量为,则即,取,得,又平面的一个法向量为,所以.因此,二面角的余弦值为【点睛】本题考查线面平行的判定,考查利用空间向量求解二面角,考查逻辑推理能力及运算求解能力,难度一般.20、(1);(2)证明见详解,【解析】(1)根据,可得,然后作差,可得结果.(2)根据(1)的结论,用取代,得到新的式子,然后作差,可得结果,最后

15、根据等比数列的前项和公式,可得结果.【详解】(1)由,则-可得:所以(2)由(1)可知:则-可得:则,且令,则,所以数列是首项为,公比为的等比数列所以【点睛】本题主要考查递推公式以及之间的关系的应用,考验观察能力以及分析能力,属中档题.21、 (1) AB的中点的横坐标为;(2)证明见解析;(3)【解析】设.(1)因为直线的倾斜角为,所以直线AB的方程为,联立方程组,消去并整理,得,则,故线段AB的中点的横坐标为(2)根据题意得点,若直线AB的斜率为0,则直线AB的方程为,A、C两点重合,显然M,B,C三点共线;若直线AB的斜率不为0,设直线AB的方程为,联立方程组,消去并整理得,则,设直线B

16、M、CM的斜率分别为、,则,即=,即M,B,C三点共线 (3)根据题意,得直线GH的斜率存在,设该直线的方程为,设,联立方程组,消去并整理,得,由,整理得,又,所以, 结合,得,当时,该直线为轴,即,此时椭圆上任意一点P都满足,此时符合题意; 当时,由,得,代入椭圆C的方程,得,整理,得,再结合,得到,即,综上,得到实数的取值范围是22、(1)见解析;(II) .【解析】试题分析:(1)取中点,连结,以为原点,为轴,为轴,为轴,建立空间直角坐标系,利用向量法能证明为直角三角形;(2)设,由,得,求出平面的法向量和平面的法向量,根据空间向量夹角余弦公式能求出结果.试题解析:(I)取中点,连结,依题意可知均为正三角形,所以,又平面平面,所以平面,又平面,所以,因为,所以,即,从而为直角三角形.(II)法一:由(I)可知,又平面平面,平面平面,平面,所以平面.以为原点,建立空间直角坐标系如图所示,则,由可得点的坐标所以,设平面的法向量为,则,即解得,令,得,显然平面的一个法向量为,依题意,解得或(舍去),所以,当时,二面角的余弦值为.法二:由(I)可知平面,所以,所以为二面角的平面角,即,在中,,所以,由正弦定理可得,即解得,又,所以,所以,当时,二面角的余弦值为.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁