《安徽省合肥市北城片区市级名校2023年中考联考数学试题含解析.doc》由会员分享,可在线阅读,更多相关《安徽省合肥市北城片区市级名校2023年中考联考数学试题含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,ABC是O的内接三角形,BOC120,则A等于()A50B60C55D652点P(1,2)关于y轴对称的点的坐标是()A(1,2)B(1,2)C(1,2)D(2,1)3如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE折叠到DF,延长EF交AB于G,连接DG,现在有
2、如下4个结论:;GDE=45;DG=DE在以上4个结论中,正确的共有( )个A1个B2 个C3 个D4个4如图,O为坐标原点,四边彤OACB是菱形,OB在x轴的正半轴上,sinAOB=,反比例函数在第一象限内的图象经过点A,与BC交于点F,删AOF的面积等于( )A10 B9 C8 D65二次函数y=ax2+bx+c(a0)的图象如图,则反比例函数y=与一次函数y=bxc在同一坐标系内的图象大致是( )ABCD6如图,有一矩形纸片ABCD,AB=6,AD=8,将纸片折叠使AB落在AD边上,折痕为AE,再将ABE以BE为折痕向右折叠,AE与CD交于点F,则的值是()A1BCD7如图,在ABC中,
3、分别以点A和点C为圆心,大于AC长为半径画弧,两弧相交于点M,N,作直线MN分别交BC,AC于点D,E,若AE=3cm,ABD的周长为13cm,则ABC的周长为()A16cmB19cmC22cmD25cm8已知一次函数y=kx+3和y=k1x+5,假设k0且k10,则这两个一次函数的图像的交点在( )A第一象限B第二象限C第三象限D第四象限9在一组数据:1,2,4,5中加入一个新数3之后,新数据与原数据相比,下列说法正确的是()A中位数不变,方差不变B中位数变大,方差不变C中位数变小,方差变小D中位数不变,方差变小10运用图形变化的方法研究下列问题:如图,AB是O的直径,CD,EF是O的弦,且
4、ABCDEF,AB=10,CD=6,EF=8.则图中阴影部分的面积是( )ABCD二、填空题(共7小题,每小题3分,满分21分)11假期里小菲和小琳结伴去超市买水果,三次购买的草莓价格和数量如下表:价格/(元/kg)12108合计/kg小菲购买的数量/kg2226小琳购买的数量/kg1236从平均价格看,谁买得比较划算?( )A一样划算 B小菲划算C小琳划算 D无法比较12把多项式9x3x分解因式的结果是_13如图,正方形ABCD中,E为AB的中点,AFDE于点O,那么等于( )A;B;C;D14如图,点A、B、C是O上的三点,且AOB是正三角形,则ACB的度数是 。15某地区的居民用电,按照
5、高峰时段和空闲时段规定了不同的单价某户5月份高峰时段用电量是空闲时段用电量2倍,6月份高峰时段用电量比5月份高峰时段用电量少50%,结果6月份的用电量和5月份的用电量相等,但6月份的电费却比5月份的电费少25%,求该地区空闲时段民用电的单价比高峰时段的用电单价低的百分率是_16如图,在正方形ABCD中,BC=2,E、F分别为射线BC,CD上两个动点,且满足BE=CF,设AE,BF交于点G,连接DG,则DG的最小值为_17如图,两个三角形相似,AD=2,AE=3,EC=1,则BD=_三、解答题(共7小题,满分69分)18(10分)如图,AB是O的直径,点C在AB的延长线上,AD平分CAE交O于点
6、D,且AECD,垂足为点E(1)求证:直线CE是O的切线(2)若BC3,CD3,求弦AD的长19(5分)根据函数学习中积累的知识与经验,李老师要求学生探究函数y=+1的图象同学们通过列表、描点、画图象,发现它的图象特征,请你补充完整(1)函数y=+1的图象可以由我们熟悉的函数 的图象向上平移 个单位得到;(2)函数y=+1的图象与x轴、y轴交点的情况是: ;(3)请你构造一个函数,使其图象与x轴的交点为(2,0),且与y轴无交点,这个函数表达式可以是 20(8分)为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C三类分别装袋,投放,其中A类指废电池,过期药品等有毒垃圾,B类指剩余食品等厨余垃圾
7、,C类指塑料,废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类(1)直接写出甲投放的垃圾恰好是A类的概率;(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率21(10分)某校七年级(1)班班主任对本班学生进行了“我最喜欢的课外活动”的调查,并将调查结果分为书法和绘画类记为A;音乐类记为B;球类记为C;其他类记为D根据调查结果发现该班每个学生都进行了等级且只登记了一种自己最喜欢的课外活动班主任根据调查情况把学生都进行了归类,并制作了如下两幅统计图,请你结合图中所给信息解答下列问题:七年级(1)班学生总人数为_人,扇形统计图中D类所对应扇形的圆心角为_度,请补全条形统计图
8、;学校将举行书法和绘画比赛,每班需派两名学生参加,A类4名学生中有两名学生擅长书法,另两名擅长绘画班主任现从A类4名学生中随机抽取两名学生参加比赛,请你用列表或画树状图的方法求出抽到的两名学生恰好是一名擅长书法,另一名擅长绘画的概率22(10分)如图,在RtABC中,CD,CE分别是斜边AB上的高,中线,BCa,ACb若a3,b4,求DE的长;直接写出:CD (用含a,b的代数式表示);若b3,tanDCE=,求a的值23(12分)如图1,在正方形ABCD中,E是边BC的中点,F是CD上一点,已知AEF90(1)求证:;(2)平行四边形ABCD中,E是边BC上一点,F是边CD上一点,AFEAD
9、C,AEF90如图2,若AFE45,求的值;如图3,若ABBC,EC3CF,直接写出cosAFE的值24(14分)如图,ABC是O的内接三角形,点D在上,点E在弦AB上(E不与A重合),且四边形BDCE为菱形(1)求证:AC=CE;(2)求证:BC2AC2=ABAC;(1)已知O的半径为1若=,求BC的长;当为何值时,ABAC的值最大?参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】由圆周角定理即可解答.【详解】ABC是O的内接三角形,A BOC,而BOC120,A60.故选B【点睛】本题考查了圆周角定理,熟练运用圆周角定理是解决问题的关键.2、C【解析】关于
10、y轴对称的点,纵坐标相同,横坐标互为相反数,由此可得P(1,2)关于y轴对称的点的坐标是(1,2),故选C【点睛】本题考查了关于坐标轴对称的点的坐标,正确地记住关于坐标轴对称的点的坐标特征是关键.关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴对称的点的坐标特点:纵坐标不变,横坐标互为相反数.3、C【解析】【分析】根据正方形的性质和折叠的性质可得AD=DF,A=GFD=90,于是根据“HL”判定ADGFDG,再由GF+GB=GA+GB=12,EB=EF,BGE为直角三角形,可通过勾股定理列方程求出AG=4,BG=8,根据全等三角形性质可求得GDE=45,再抓住BEF是等腰三角
11、形,而GED显然不是等腰三角形,判断是错误的【详解】由折叠可知,DF=DC=DA,DFE=C=90,DFG=A=90,ADGFDG,正确;正方形边长是12,BE=EC=EF=6,设AG=FG=x,则EG=x+6,BG=12x,由勾股定理得:EG2=BE2+BG2,即:(x+6)2=62+(12x)2,解得:x=4AG=GF=4,BG=8,BG=2AG,正确;ADGFDG,DCEDFE,ADG=FDG,FDE=CDEGDE=45.正确; BE=EF=6,BEF是等腰三角形,易知GED不是等腰三角形,错误;正确说法是故选:C【点睛】本题综合性较强,考查了翻折变换的性质和正方形的性质,全等三角形的判
12、定与性质,勾股定理,有一定的难度4、A【解析】 过点A作AMx轴于点M,过点F作FNx轴于点N,设OA=a,BF=b,通过解直角三角形分别找出点A、F的坐标,结合反比例函数图象上点的坐标特征即可求出a、b的值,通过分割图形求面积,最终找出AOF的面积等于梯形AMNF的面积,利用梯形的面积公式即可得出结论解:过点A作AMx轴于点M,过点F作FNx轴于点N,如图所示设OA=a,BF=b,在RtOAM中,AMO=90,OA=a,sinAOB=,AM=OAsinAOB=a,OM=a,点A的坐标为(a, a)点A在反比例函数y=的图象上,aa=a2=12,解得:a=5,或a=5(舍去)AM=8,OM=1
13、四边形OACB是菱形,OA=OB=10,BCOA,FBN=AOB在RtBNF中,BF=b,sinFBN=,BNF=90,FN=BFsinFBN=b,BN=b,点F的坐标为(10+b,b)点F在反比例函数y=的图象上,(10+b)b=12,SAOF=SAOM+S梯形AMNFSOFN=S梯形AMNF=10故选A“点睛”本题主要考查了菱形的性质、解直角三角形以及反比例函数图象上点的坐标特征,解题的关键是找出SAOF=S菱形OBCA.5、C【解析】根据二次函数的图象找出a、b、c的正负,再结合反比例函数、一次函数系数与图象的关系即可得出结论【详解】解:观察二次函数图象可知:开口向上,a1;对称轴大于1
14、,1,b1;二次函数图象与y轴交点在y轴的正半轴,c1反比例函数中ka1,反比例函数图象在第二、四象限内;一次函数ybxc中,b1,c1,一次函数图象经过第二、三、四象限故选C【点睛】本题考查了二次函数的图象、反比例函数的图象以及一次函数的图象,解题的关键是根据二次函数的图象找出a、b、c的正负本题属于基础题,难度不大,解决该题型题目时,根据二次函数图象找出a、b、c的正负,再结合反比例函数、一次函数系数与图象的关系即可得出结论6、C【解析】由题意知:AB=BE=6,BD=ADAB=2(图2中),AD=ABBD=4(图3中);CEAB,ECFADF,得,即DF=2CF,所以CF:CD=1:3,
15、故选C【点睛】本题考查了矩形的性质,折叠问题,相似三角形的判定与性质等,准确识图是解题的关键.7、B【解析】根据作法可知MN是AC的垂直平分线,利用垂直平分线的性质进行求解即可得答案.【详解】解:根据作法可知MN是AC的垂直平分线,DE垂直平分线段AC,DA=DC,AE=EC=6cm,AB+AD+BD=13cm,AB+BD+DC=13cm,ABC的周长=AB+BD+BC+AC=13+6=19cm,故选B【点睛】本题考查作图-基本作图,线段的垂直平分线的性质等知识,解题的关键是熟练掌握线段的垂直平分线的性质8、B【解析】依题意在同一坐标系内画出图像即可判断.【详解】根据题意可作两函数图像,由图像
16、知交点在第二象限,故选B.【点睛】此题主要考查一次函数的图像,解题的关键是根据题意作出相应的图像.9、D【解析】根据中位数和方差的定义分别计算出原数据和新数据的中位数和方差,从而做出判断【详解】原数据的中位数是=3,平均数为=3,方差为(1-3)2+(2-3)2+(4-3)2+(5-3)2=;新数据的中位数为3,平均数为=3,方差为(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2=2;所以新数据与原数据相比中位数不变,方差变小,故选:D【点睛】本题考查了中位数和方差,解题的关键是掌握中位数和方差的定义10、A【解析】【分析】作直径CG,连接OD、OE、OF、DG,则根据圆周
17、角定理求得DG的长,证明DG=EF,则S扇形ODG=S扇形OEF,然后根据三角形的面积公式证明SOCD=SACD,SOEF=SAEF,则S阴影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圆,即可求解【详解】作直径CG,连接OD、OE、OF、DGCG是圆的直径,CDG=90,则DG=8,又EF=8,DG=EF,S扇形ODG=S扇形OEF,ABCDEF,SOCD=SACD,SOEF=SAEF,S阴影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圆=52=,故选A【点睛】本题考查扇形面积的计算,圆周角定理本题中找出两个阴影部分面积之间的联系是解题的关键二、填空题(共
18、7小题,每小题3分,满分21分)11、C【解析】试题分析:根据题意分别求出两人的平均价格,然后进行比较小菲:(24+20+16)6=10;小琳:(12+20+24)613,则小琳划算考点:平均数的计算12、x(3x+1)(3x1)【解析】提取公因式分解多项式,再根据平方差公式分解因式,从而得到答案.【详解】9x3xx(9x21)x(3x1)(3x1),故答案为x(3x1)(3x1).【点睛】本题主要考查了因式分解以及平方差公式,解本题的要点在于熟知多项式分解因式的相关方法.13、D【解析】利用DAO与DEA相似,对应边成比例即可求解【详解】DOA=90,DAE=90,ADE是公共角,DAO=D
19、EADAODEA即AE=AD故选D14、30【解析】试题分析:圆周角定理:同弧或等弧所对的圆周角相等,均等于所对圆心角的一半.AOB是正三角形AOB=60ACB=30.考点:圆周角定理点评:本题属于基础应用题,只需学生熟练掌握圆周角定理,即可完成.15、60%【解析】设空闲时段民用电的单价为x元/千瓦时,高峰时段民用电的单价为y元/千瓦时,该用户5月份空闲时段用电量为a千瓦时,则5月份高峰时段用电量为2a千瓦时,6月份空闲时段用电量为2a千瓦时,6月份高峰时段用电量为a千瓦时,根据总价单价数量结合6月份的电费却比5月份的电费少25%,即可得出关于x,y的二元一次方程,解之即可得出x,y之间的关
20、系,进而即可得出结论【详解】设空闲时段民用电的单价为x元/千瓦时,高峰时段民用电的单价为y元/千瓦时,该用户5月份空闲时段用电量为a千瓦时,则5月份高峰时段用电量为2a千瓦时,6月份空闲时段用电量为2a千瓦时,6月份高峰时段用电量为a千瓦时,依题意,得:(125%)(ax+2ay)2ax+ay,解得:x0.4y,该地区空闲时段民用电的单价比高峰时段的用电单价低100%60%故答案为60%【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键16、1【解析】先由图形确定:当O、G、D共线时,DG最小;根据正方形的性质证明ABEBCF(SAS),可得AGB=90,利用
21、勾股定理可得OD的长,从而得DG的最小值【详解】在正方形ABCD中,AB=BC,ABC=BCD,在ABE和BCF中,ABEBCF(SAS),BAE=CBF,CBF+ABF=90BAE+ABF=90AGB=90点G在以AB为直径的圆上,由图形可知:当O、G、D在同一直线上时,DG有最小值,如图所示:正方形ABCD,BC=2,AO=1=OGOD=,DG=1,故答案为1.【点睛】本题考查了正方形的性质与全等三角形的判定与性质,解题的关键是熟练的掌握正方形的性质与全等三角形的判定与性质.17、1【解析】根据相似三角形的对应边的比相等列出比例式,计算即可【详解】ADEACB,=,即=,解得:BD=1故答
22、案为1【点睛】本题考查的是相似三角形的性质,掌握相似三角形的对应边的比相等是解题的关键三、解答题(共7小题,满分69分)18、(1)证明见解析(2) 【解析】(1)连结OC,如图,由AD平分EAC得到1=3,加上1=2,则3=2,于是可判断ODAE,根据平行线的性质得ODCE,然后根据切线的判定定理得到结论;(2)由CDBCAD,可得,推出CD2=CBCA,可得(3)2=3CA,推出CA=6,推出AB=CABC=3,设BD=k,AD=2k,在RtADB中,可得2k2+4k2=5,求出k即可解决问题【详解】(1)证明:连结OC,如图,AD平分EAC,1=3,OA=OD,1=2,3=2,ODAE,
23、AEDC,ODCE,CE是O的切线;(2)CDO=ADB=90,2=CDB=1,C=C,CDBCAD,CD2=CBCA,(3)2=3CA,CA=6,AB=CABC=3,,设BD=k,AD=2k,在RtADB中,2k2+4k2=5,k=,AD=19、(1),1;(2)与x轴交于(1,0),与y轴没交点;(3)答案不唯一,如:y=+1.【解析】(1)根据函数图象的平移规律,可得答案;(2)根据自变量与函数值的对应关系,可得答案;(3)根据点的坐标满足函数解析式,可得答案【详解】(1)函数的图象可以由我们熟悉的函数的图象向上平移1个单位得到,故答案为:,1;(2)函数的图象与x轴、y轴交点的情况是:
24、与x轴交于(1,0),与y轴没交点,故答案为:与x轴交于(1,0),与y轴没交点;(3)请你构造一个函数,使其图象与x轴的交点为(2,0),且与y轴无交点,这个函数表达式可以是:y=+1, 答案不唯一,故答案为:y=+1【点睛】本题考查了函数图像的平移变换,函数自变量的取值范围,函数图象与坐标轴的交点等知识,利用函数图象的平移规律是解题关键20、(1)(2)【解析】(1)根据总共三种,A只有一种可直接求概率;(2)列出其树状图,然后求出能出现的所有可能,及符合条件的可能,根据概率公式求解即可【详解】解: (1)甲投放的垃圾恰好是A类的概率是(2)列出树状图如图所示:由图可知,共有18种等可能结
25、果,其中乙投放的垃圾恰有一袋与甲投放的垃圾是同类的结果有12种所以, (乙投放的垃圾恰有一袋与甲投放的垃圾是同类)即,乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率是21、48;105;【解析】试题分析:根据B的人数和百分比求出总人数,根据D的人数和总人数的得出D所占的百分比,然后得出圆心角的度数,根据总人数求出C的人数,然后补全统计图;记A类学生擅长书法的为A1,擅长绘画的为A2,根据题意画出表格,根据概率的计算法则得出答案试题解析:(1)1225%=48(人) 1448360=105 48(4+12+14)=18(人),补全图形如下:(2)记A类学生擅长书法的为A1,擅长绘画的为A2,则可
26、列下表:A1A1A2A2A1A1A2A2由上表可得:考点:统计图、概率的计算22、(1);(2);(3).【解析】(1)求出BE,BD即可解决问题(2)利用勾股定理,面积法求高CD即可(3)根据CD3DE,构建方程即可解决问题【详解】解:(1)在RtABC中,ACB91,a3,b4,CD,CE是斜边AB上的高,中线,BDC91,在RtBCD中,(2)在RtABC中,ACB91,BCa,ACb,故答案为:(3)在RtBCD中,又,CD3DE,即b3,2a9a2,即a2+2a91由求根公式得(负值舍去),即所求a的值是【点睛】本题考查解直角三角形的应用,直角三角形斜边中线的性质,勾股定理等知识,解
27、题的关键是熟练掌握基本知识,属于中考常考题型23、(1)见解析;(2);cosAFE【解析】(1)用特殊值法,设,则,证,可求出CF,DF的长,即可求出结论;(2)如图2,过F作交AD于点G,证和是等腰直角三角形,证,求出的值,即可写出的值;如图3,作交AD于点T,作于H,证,设CF2,则CE6,可设ATx,则TF3x,分别用含x的代数式表示出AFE和D的余弦值,列出方程,求出x的值,即可求出结论【详解】(1)设BEEC2,则ABBC4,FECEAB,又,即,CF1,则,;(2)如图2,过F作交AD于点G,和是等腰直角三角形,AGFC,又,GAFCFE,又GFDF,;如图3,作交AD于点T,作
28、于H,则,ATFC,又,且DAFE,TAFCFE,设CF2,则CE6,可设ATx,则TF3x,且,由,得,解得x5,【点睛】本题主要考查了三角形相似的判定及性质的综合应用,熟练掌握三角形相似的判定及性质是解决本题的关键.24、(1)证明见解析;(2)证明见解析;(1)BC=4;【解析】分析:(1)由菱形知D=BEC,由A+D=BEC+AEC=180可得A=AEC,据此得证;(2)以点C为圆心,CE长为半径作C,与BC交于点F,于BC延长线交于点G,则CF=CG=AC=CE=CD,证BEFBGA得,即BFBG=BEAB,将BF=BC-CF=BC-AC、BG=BC+CG=BC+AC代入可得;(1)
29、设AB=5k、AC=1k,由BC2-AC2=ABAC知BC=2k,连接ED交BC于点M,RtDMC中由DC=AC=1k、MC=BC=k求得DM=k,可知OM=OD-DM=1-k,在RtCOM中,由OM2+MC2=OC2可得答案设OM=d,则MD=1-d,MC2=OC2-OM2=9-d2,继而知BC2=(2MC)2=16-4d2、AC2=DC2=DM2+CM2=(1-d)2+9-d2,由(2)得ABAC=BC2-AC2,据此得出关于d的二次函数,利用二次函数的性质可得答案详解:(1)四边形EBDC为菱形,D=BEC,四边形ABDC是圆的内接四边形,A+D=180,又BEC+AEC=180,A=A
30、EC,AC=CE;(2)以点C为圆心,CE长为半径作C,与BC交于点F,于BC延长线交于点G,则CF=CG,由(1)知AC=CE=CD,CF=CG=AC,四边形AEFG是C的内接四边形,G+AEF=180,又AEF+BEF=180,G=BEF,EBF=GBA,BEFBGA,即BFBG=BEAB,BF=BCCF=BCAC、BG=BC+CG=BC+AC,BE=CE=AC,(BCAC)(BC+AC)=ABAC,即BC2AC2=ABAC;(1)设AB=5k、AC=1k,BC2AC2=ABAC,BC=2k,连接ED交BC于点M,四边形BDCE是菱形,DE垂直平分BC,则点E、O、M、D共线,在RtDMC
31、中,DC=AC=1k,MC=BC=k,DM=,OM=ODDM=1k,在RtCOM中,由OM2+MC2=OC2得(1k)2+(k)2=12,解得:k=或k=0(舍),BC=2k=4;设OM=d,则MD=1d,MC2=OC2OM2=9d2,BC2=(2MC)2=164d2,AC2=DC2=DM2+CM2=(1d)2+9d2,由(2)得ABAC=BC2AC2=4d2+6d+18=4(d)2+,当d=,即OM=时,ABAC最大,最大值为,DC2=,AC=DC=,AB=,此时点睛:本题主要考查圆的综合问题,解题的关键是掌握圆的有关性质、圆内接四边形的性质及菱形的性质、相似三角形的判定与性质、二次函数的性质等知识点