《安徽省“六校联盟”达标名校2022-2023学年中考考前最后一卷数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《安徽省“六校联盟”达标名校2022-2023学年中考考前最后一卷数学试卷含解析.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1若关于x的分式方程的解为非负数,则a的取值范围是()Aa1Ba1Ca1且a4Da1且a42若一组数据2,3,4,5,x的平均数与中位数相等,则实数x的值不可能是( )A6B3.5C2.5D
2、13把不等式组的解集表示在数轴上,正确的是()ABCD4如图,在ABC中,DEBC交AB于D,交AC于E,错误的结论是( )ABCD5甲、乙两船从相距300km的A、B两地同时出发相向而行,甲船从A地顺流航行180km时与从B地逆流航行的乙船相遇,水流的速度为6km/h,若甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为()A=B=C=D=6如图,已知ABCD,DEAF,垂足为E,若CAB=50,则D的度数为()A30B40C50D607正比例函数y2kx的图象如图所示,则y(k2)x1k的图象大致是()ABCD8若55+55+55+55+5525n,则n的值为()A1
3、0B6C5D39已知反比例函数y=的图象位于第一、第三象限,则k的取值范围是()Ak8Bk8Ck8Dk810如图,四边形ABCE内接于O,DCE=50,则BOE=()A100B50C70D13011在一个直角三角形中,有一个锐角等于45,则另一个锐角的度数是()A75B60C45D30122018年,我国将加大精准扶贫力度,今年再减少农村贫困人口1000万以上,完成异地扶贫搬迁280万人其中数据280万用科学计数法表示为( )A2.8105B2.8106C28105D0.28107二、填空题:(本大题共6个小题,每小题4分,共24分)13计算:(a2)2=_14若代数式有意义,则实数x的取值范
4、围是_.15数据2,0,1,2,5的平均数是_,中位数是_16若与是同类项,则的立方根是 17把抛物线y=x22x+3沿x轴向右平移2个单位,得到的抛物线解析式为 18如图,ABCDE是正五边形,已知AG=1,则FG+JH+CD=_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,已知在RtABC中,ACB=90,ACBC,CD是RtABC的高,E是AC的中点,ED的延长线与CB的延长线相交于点F(1)求证:DF是BF和CF的比例中项;(2)在AB上取一点G,如果AEAC=AGAD,求证:EGCF=EDDF20(6分)解不等式组21(6分)在矩形
5、ABCD中,AD=2AB,E是AD的中点,一块三角板的直角顶点与点E重合,两直角边与AB,BC分别交于点M,N,求证:BM=CN22(8分)已知a,b,c为ABC的三边,且满足a2c2b2c2a4b4,试判定ABC的形状23(8分)已知:如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AGDB交CB的延长线于G求证:ADECBF;若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论24(10分)如图,在四边形ABCD中,E是AB的中点,AD/EC,AED=B求证:AEDEBC;当AB=6时,求CD的长25(10分)如图,已知,请用尺规过点作一条直
6、线,使其将分成面积比为两部分(保留作图痕迹,不写作法)26(12分)在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动教务处在该校七年级学生中随机抽取了100名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整)请解答下列问题:请补全条形统计图和扇形统计图;在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?若该校七年级学生共有500人,请估计其中参加“书法”项目活动的有多少人?学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正
7、好抽到参加“器乐”活动项目的女生的概率是多少?27(12分)据报道,“国际剪刀石头布协会”提议将“剪刀石头布”作为奥运会比赛项目某校学生会想知道学生对这个提议的了解程度,随机抽取部分学生进行了一次问卷调查,并根据收集到的信息进行了统计,绘制了下面两幅尚不完整的统计图请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有_名,扇形统计图中“基本了解”部分所对应扇形的圆心角为_;请补全条形统计图;(2)若该校共有学生900人,请根据上述调查结果,估计该校学生中对将“剪刀石头布”作为奥运会比赛项目的提议达到“了解”和“基本了解”程度的总人数;(3)“剪刀石头布”比赛时双方每次任意出“
8、剪刀”、“石头”、“布”这三种手势中的一种,规则为:剪刀胜布,布胜石头,石头胜剪刀,若双方出现相同手势,则算打平若小刚和小明两人只比赛一局,请用树状图或列表法求两人打平的概率参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】试题分析:分式方程去分母转化为整式方程,表示出整式方程的解,根据解为非负数及分式方程分母不为1求出a的范围即可解:去分母得:2(2xa)=x2,解得:x=,由题意得:1且2,解得:a1且a4,故选C点睛:此题考查了分式方程的解,需注意在任何时候都要考虑分母不为12、C【解析】因为中位数的值与大小排列
9、顺序有关,而此题中x的大小位置未定,故应该分类讨论x所处的所有位置情况:从小到大(或从大到小)排列在中间;结尾;开始的位置【详解】(1)将这组数据从小到大的顺序排列为2,3,4,5,x,处于中间位置的数是4,中位数是4,平均数为(2+3+4+5+x)5,4=(2+3+4+5+x)5,解得x=6;符合排列顺序;(2)将这组数据从小到大的顺序排列后2,3,4,x,5,中位数是4,此时平均数是(2+3+4+5+x)5=4,解得x=6,不符合排列顺序;(3)将这组数据从小到大的顺序排列后2,3,x,4,5,中位数是x,平均数(2+3+4+5+x)5=x,解得x=3.5,符合排列顺序;(4)将这组数据从
10、小到大的顺序排列后2,x,3,4,5,中位数是3,平均数(2+3+4+5+x)5=3,解得x=1,不符合排列顺序;(5)将这组数据从小到大的顺序排列后x,2,3,4,5,中位数是3,平均数(2+3+4+5+x)5=3,解得x=1,符合排列顺序;x的值为6、3.5或1故选C【点睛】考查了确定一组数据的中位数,涉及到分类讨论思想,较难,要明确中位数的值与大小排列顺序有关,一些学生往往对这个概念掌握不清楚,计算方法不明确而解答不完整注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数3、A【解析】分别求出
11、各个不等式的解集,再求出这些解集的公共部分并在数轴上表示出来即可【详解】 由,得x2,由,得x1,所以不等式组的解集是:2x1不等式组的解集在数轴上表示为:故选A【点睛】本题考查的是解一元一次不等式组熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键4、D【解析】根据平行线分线段成比例定理及相似三角形的判定与性质进行分析可得出结论.【详解】由DEBC,可得ADEABC,并可得:,故A,B,C正确;D错误;故选D【点睛】考点:1.平行线分线段成比例;2.相似三角形的判定与性质5、A【解析】分析:直接利用两船的行驶距离除以速度=时间,得出等式求出答案详解:设甲、乙两船
12、在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为:=故选A点睛:此题主要考查了由实际问题抽象出分式方程,正确表示出行驶的时间和速度是解题关键6、B【解析】试题解析:ABCD,且 在中, 故选B7、B【解析】试题解析:由图象可知,正比函数y=2kx的图象经过二、四象限,2k0,得k0,k20,函数y=(k2)x+1k图象经过一、二、四象限,故选B.8、D【解析】直接利用提取公因式法以及幂的乘方运算法则将原式变形进而得出答案【详解】解:55+55+55+55+55=25n,555=52n,则56=52n,解得:n=1故选D【点睛】此题主要考查了幂的乘方运算,正确将原式变形是解题关键9
13、、A【解析】本题考查反比例函数的图象和性质,由k-80即可解得答案【详解】反比例函数y=的图象位于第一、第三象限,k-80,解得k8,故选A【点睛】本题考查了反比例函数的图象和性质:、当k0时,图象分别位于第一、三象限;当k0时,图象分别位于第二、四象限、当k0时,在同一个象限内,y随x的增大而减小;当k0时,在同一个象限,y随x的增大而增大10、A【解析】根据圆内接四边形的任意一个外角等于它的内对角求出A,根据圆周角定理计算即可【详解】四边形ABCE内接于O,由圆周角定理可得,故选:A【点睛】本题考查的知识点是圆的内接四边形性质,解题关键是熟记圆内接四边形的任意一个外角等于它的内对角(就是和
14、它相邻的内角的对角).11、C【解析】根据直角三角形两锐角互余即可解决问题.【详解】解:直角三角形两锐角互余,另一个锐角的度数=9045=45,故选C【点睛】本题考查直角三角形的性质,记住直角三角形两锐角互余是解题的关键12、B【解析】分析:科学记数法的表示形式为的形式,其中为整数确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同当原数绝对值1时,是正数;当原数的绝对值1时,是负数详解:280万这个数用科学记数法可以表示为 故选B. 点睛:考查科学记数法,掌握绝对值大于1的数的表示方法是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分)13、a1【
15、解析】根据幂的乘方法则进行计算即可.【详解】 故答案为【点睛】考查幂的乘方,掌握运算法则是解题的关键.14、x5.【解析】根据分母不为零分式有意义,可得答案.【详解】由题意,得x+50,解得x5,故答案是:x5.【点睛】本题考查了分式有意义的条件,利用分母不为零分式有意义得出不等式是解题关键.15、0.8 0 【解析】根据中位数的定义和平均数的求法计算即可,中位数是将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数【详解】平均数=(2+01+2+5)5=0.8;把这组数
16、据按从大到小的顺序排列是:5,2,0,-1,-2,故这组数据的中位数是:0.故答案为0.8;0.【点睛】本题考查了平均数与中位数的定义,解题的关键是熟练的掌握平均数与中位数的定义.16、2【解析】试题分析:若与是同类项,则:,解方程得:=23(2)=8.8的立方根是2故答案为2考点:2立方根;2合并同类项;3解二元一次方程组;4综合题17、y=(x3)2+2【解析】根据题意易得新抛物线的顶点,根据顶点式及平移前后二次项的系数不变可得新抛物线的解析式【详解】解:y=x22x+3=(x1)2+2,其顶点坐标为(1,2)向右平移2个单位长度后的顶点坐标为(3,2),得到的抛物线的解析式是y=(x3)
17、2+2,故答案为:y=(x3)2+2.【点睛】此题主要考查了次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减18、+1【解析】根据对称性可知:GJBH,GBJH,四边形JHBG是平行四边形,JH=BG,同理可证:四边形CDFB是平行四边形,CD=FB,FG+JH+CD=FG+BG+FB=2BF,设FG=x,AFG=AFB,FAG=ABF=36,AFGBFA,AF2=FGBF,AF=AG=BG=1,x(x+1)=1,x=(负根已经舍弃),BF=+1=,FG+JH+CD=+1故答案为+1三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、证明见解析
18、【解析】试题分析:(1)根据已知求得BDF=BCD,再根据BFD=DFC,证明BFDDFC,从而得BF:DF=DF:FC,进行变形即得;(2)由已知证明AEGADC,得到AEG=ADC=90,从而得EGBC,继而得 ,由(1)可得 ,从而得 ,问题得证.试题解析:(1)ACB=90,BCD+ACD=90,CD是RtABC的高,ADC=BDC=90,A+ACD=90,A=BCD,E是AC的中点,DE=AE=CE,A=EDA,ACD=EDC,EDC+BDF=180-BDC=90,BDF=BCD,又BFD=DFC,BFDDFC,BF:DF=DF:FC,DF2=BFCF;(2)AEAC=EDDF, ,
19、又A=A,AEGADC,AEG=ADC=90,EGBC, ,由(1)知DFDDFC, , ,EGCF=EDDF.20、x1【解析】分析:按照解一元一次不等式组的一般步骤解答即可.详解:,由得x1,由得x1,原不等式组的解集是x1点睛:“熟练掌握一元一次不等式组的解法”是正确解答本题的关键.21、证明见解析.【解析】试题分析:作于点F,然后证明 ,从而求出所所以BM与CN的长度相等试题解析:在矩形ABCD中,AD=2AB,E是AD的中点,作EFBC于点F,则有AB=AE=EF=FC, AEM=FEN,在RtAME和RtFNE中,E为AB的中点,AB=CF,AEM=FEN,AE=EF,MAE=NF
20、E,RtAMERtFNE,AM=FN,MB=CN.22、等腰直角三角形【解析】首先把等式的左右两边分解因式,再考虑等式成立的条件,从而判断ABC的形状【详解】解:a2c2b2c2=a4b4,a4b4a2c2+b2c2=0,(a4b4)(a2c2b2c2)=0,(a2+b2)(a2b2)c2(a2b2)=0,(a2+b2c2)(a2b2)=0得:a2+b2=c2或a=b,或者a2+b2=c2且a=b,即ABC为直角三角形或等腰三角形或等腰直角三角形考点:勾股定理的逆定理23、(1)证明见解析(2)当四边形BEDF是菱形时,四边形AGBD是矩形;证明见解析;【解析】(1)在证明全等时常根据已知条件
21、,分析还缺什么条件,然后用(SAS,ASA,SSS)来证明全等;(2)先由菱形的性质得出AE=BE=DE,再通过角之间的关系求出2+3=90即ADB=90,所以判定四边形AGBD是矩形【详解】解:证明:四边形是平行四边形,点、分别是、的中点,在和中,解:当四边形是菱形时,四边形是矩形证明:四边形是平行四边形,四边形是平行四边形四边形是菱形,即四边形是矩形【点睛】本题主要考查了平行四边形的基本性质和矩形的判定及全等三角形的判定平行四边形基本性质:平行四边形两组对边分别平行;平行四边形的两组对边分别相等;平行四边形的两组对角分别相等;平行四边形的对角线互相平分三角形全等的判定条件:SSS,SAS,
22、AAS,ASA24、(1)证明见解析;(2)CD =3【解析】分析: (1)根据二直线平行同位角相等得出A=BEC,根据中点的定义得出AE=BE,然后由ASA判断出AEDEBC;(2)根据全等三角形对应边相等得出AD=EC,然后根据一组对边平行且相等的四边形是平行四边形得出四边形AECD是平行四边形,根据平行四边形的对边相等得出答案.详解:(1)证明 :ADECA=BECE是AB中点,AE=BEAED=BAEDEBC(2)解 :AEDEBCAD=ECADEC四边形AECD是平行四边形CD=AEAB=6CD= AB=3点睛: 本题考查全等三角形的判定和性质、平行四边形的判定和性质等知识,解题的关
23、键是正确寻找全等三角形解决问题,属于中考常考题型.25、详见解析【解析】先作出AB的垂直平分线,而AB的垂直平分线交AB于D,再作出AD的垂直平分线,而AD的垂直平分线交AD于E,即可得到答案.【详解】如图作出AB的垂直平分线,而AB的垂直平分线交AB于D,再作出AD的垂直平分线,而AD的垂直平分线交AD于E,故AEAD,ADBD,故AEAB,而BEAB,而AEC与CEB在AB边上的高相同,所以CEB的面积是AEC的面积的3倍,即SAECSCEB13.【点睛】本题主要考查了三角形的基本概念和尺规作图,解本题的要点在于找到AB的四分之一点,即可得到答案.26、(1)详见解析;(2)40%;(3)
24、105;(4)【解析】(1)先求出参加活动的女生人数,进而求出参加武术的女生人数,即可补全条形统计图,再分别求出参加武术的人数和参加器乐的人数,即可求出百分比;(2)用参加剪纸中男生人数除以剪纸的总人数即可得出结论;(3)根据样本估计总体的方法计算即可;(4)利用概率公式即可得出结论【详解】(1)由条形图知,男生共有:10+20+13+9=52人,女生人数为100-52=48人,参加武术的女生为48-15-8-15=10人,参加武术的人数为20+10=30人,30100=30%,参加器乐的人数为9+15=24人,24100=24%,补全条形统计图和扇形统计图如图所示:(2)在参加“剪纸”活动项
25、目的学生中,男生所占的百分比是100%40%答:在参加“剪纸”活动项目的学生中,男生所占的百分比为40%(3)50021%=105(人)答:估计其中参加“书法”项目活动的有105人(4)答:正好抽到参加“器乐”活动项目的女生的概率为【点睛】此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小27、(1)60;90;统计图详见解析;(2)300;(3)【解析】试题分析:(1)由“了解很少”的人数除以占的百分比得出学生总数,求出“基本了解”的学生占的百分比,乘以36
26、0得到结果,补全条形统计图即可;(2)求出“了解”和“基本了解”程度的百分比之和,乘以900即可得到结果;(3)列表得出所有等可能的情况数,找出两人打平的情况数,即可求出所求的概率试题解析:(1)根据题意得:3050%=60(名),“了解”人数为60(15+30+10)=5(名),“基本了解”占的百分比为100%=25%,占的角度为25%360=90,补全条形统计图如图所示:(2)根据题意得:900=300(人),则估计该校学生中对将“剪刀石头布”作为奥运会比赛项目的提议达到“了解”和“基本了解”程度的总人数为300人;(3)列表如下:剪 石 布剪 (剪,剪) (石,剪) (布,剪)石 (剪,石) (石,石) (布,石)布 (剪,布) (石,布) (布,布)所有等可能的情况有9种,其中两人打平的情况有3种,则P=考点:1、条形统计图,2、扇形统计图,3、列表法与树状图法