安徽省淮北市杜集区重点名校2022-2023学年中考数学适应性模拟试题含解析.doc

上传人:lil****205 文档编号:87998334 上传时间:2023-04-19 格式:DOC 页数:20 大小:1.06MB
返回 下载 相关 举报
安徽省淮北市杜集区重点名校2022-2023学年中考数学适应性模拟试题含解析.doc_第1页
第1页 / 共20页
安徽省淮北市杜集区重点名校2022-2023学年中考数学适应性模拟试题含解析.doc_第2页
第2页 / 共20页
点击查看更多>>
资源描述

《安徽省淮北市杜集区重点名校2022-2023学年中考数学适应性模拟试题含解析.doc》由会员分享,可在线阅读,更多相关《安徽省淮北市杜集区重点名校2022-2023学年中考数学适应性模拟试题含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1如图,四边形ABCD中,AB=CD,ADBC,以点B为圆心,BA为半径的圆弧与BC交于点E,四边形AECD是平行四边形,AB=3,则的弧长为( )ABCD32如图是一个由4个相同的正方体组成的立体图形,它的左视图为( )ABCD3如图,已知双曲线经

2、过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C若点A的坐标为(,4),则AOC的面积为A12B9C6D44如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是()ABCD5已知一组数据a,b,c的平均数为5,方差为4,那么数据a2,b2,c2的平均数和方差分别是.()A3,2B3,4C5,2D5,46关于的方程有实数根,则满足( )AB且C且D7如图,为的直径,为上两点,若,则的大小为()A60B50C40D208已知方程x2x2=0的两个实数根为x1、x2,则代数式x1+x2+x1x2的值为()A3B1C3D19如图,等腰ABC中,ABAC10,BC6,

3、直线MN垂直平分AB交AC于D,连接BD,则BCD的周长等于()A13B14C15D1610在国家“一带一路”倡议下,我国与欧洲开通了互利互惠的中欧专列行程最长,途经城市和国家最多的一趟专列全程长13000 km,将13000用科学记数法表示应为( )A0.13105B1.3104C1.3105D13103二、填空题(本大题共6个小题,每小题3分,共18分)11 如图,已知,要使,还需添加一个条件,则可以添加的条件是 (只写一个即可,不需要添加辅助线)12如图,身高是1.6m的某同学直立于旗杆影子的顶端处,测得同一时刻该同学和旗杆的影子长分别为1.2m和9m.则旗杆的高度为_m. 13如图,小

4、量角器的零度线在大量角器的零度线上,且小量角器的中心在大量角器的外缘边上如果它们外缘边上的公共点P在小量角器上对应的度数为65,那么在大量角器上对应的度数为_度(只需写出090的角度)1427的立方根为 15如图,正方形ABCD边长为3,以直线AB为轴,将正方形旋转一周所得圆柱的主视图(正视图)的周长是_16如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B、C重合的一个动点,把EBF沿EF折叠,点B落在B处,若CDB恰为等腰三角形,则DB的长为 .三、解答题(共8题,共72分)17(8分)如图,直线y=x+2与抛物线y=ax2+bx+6(a0)相交于A()和B

5、(4,m),点P是线段AB上异于A、B的动点,过点P作PCx轴于点D,交抛物线于点C(1)B点坐标为,并求抛物线的解析式;(2)求线段PC长的最大值;(3)若PAC为直角三角形,直接写出此时点P的坐标18(8分)如图,河的两岸MN与PQ相互平行,点A,B是PQ上的两点,C是MN上的点,某人在点A处测得CAQ=30,再沿AQ方向前进20米到达点B,某人在点A处测得CAQ=30,再沿AQ方向前进20米到达点B,测得CBQ=60,求这条河的宽是多少米?(结果精确到0.1米,参考数据1.414,1.732)19(8分)在中, , 是的角平分线,交于点 .(1)求的长;(2)求的长.20(8分)我校对全

6、校学生进传统文化礼仪知识测试,为了了解测试结果,随机抽取部分学生的成绩进行分析,现将成绩分为三个等级:不合格、一般、优秀,并绘制成如下两幅统计图(不完整)请你根据图中所给的信息解答下列问题:(1)本次随机抽取的人数是 人,并将以上两幅统计图补充完整;(2)若“一般”和“优秀”均被视为达标成绩,则我校被抽取的学生中有 人达标;(3)若我校学生有1200人,请你估计此次测试中,全校达标的学生有多少人?21(8分)如图,抛物线与x轴相交于A、B两点,与y轴的交于点C,其中A点的坐标为(3,0),点C的坐标为(0,3),对称轴为直线x1(1)求抛物线的解析式;(2)若点P在抛物线上,且SPOC4SBO

7、C,求点P的坐标;(3)设点Q是线段AC上的动点,作QDx轴交抛物线于点D,求线段QD长度的最大值22(10分)某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某品种蜜柚.到了收获季节,已知该蜜柚的成本价为8元/千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销售量(千克)与销售单价(元/千克)之间的函数关系如图所示. (1)求与的函数关系式,并写出的取值范围; (2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少? (3)某农户今年共采摘蜜柚4800千克,该品种蜜柚的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批蜜柚?请说明理由.23(

8、12分)(2016山东省烟台市)由于雾霾天气频发,市场上防护口罩出现热销,某医药公司每月固定生产甲、乙两种型号的防雾霾口罩共20万只,且所有产品当月全部售出,原料成本、销售单价及工人生产提成如表:(1)若该公司五月份的销售收入为300万元,求甲、乙两种型号的产品分别是多少万只?(2)公司实行计件工资制,即工人每生产一只口罩获得一定金额的提成,如果公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元,应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大?并求出最大利润(利润=销售收入投入总成本)24如图,直线与轴交于点,与轴交于点,且与双曲线的一个交点为,将直线在轴下方的部分沿轴

9、翻折,得到一个“”形折线的新函数若点是线段上一动点(不包括端点),过点作轴的平行线,与新函数交于另一点,与双曲线交于点(1)若点的横坐标为,求的面积;(用含的式子表示)(2)探索:在点的运动过程中,四边形能否为平行四边形?若能,求出此时点的坐标;若不能,请说明理由参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】四边形AECD是平行四边形,AE=CD,AB=BE=CD=3,AB=BE=AE,ABE是等边三角形,B=60,的弧长=.故选B.2、B【解析】根据左视图的定义,从左侧会发现两个正方形摞在一起.【详解】从左边看上下各一个小正方形,如图故选B3、B【解析】点,是中点点坐标

10、在双曲线上,代入可得点在直角边上,而直线边与轴垂直点的横坐标为-6又点在双曲线点坐标为从而,故选B4、D【解析】分析:根据概率的求法,找准两点:全部情况的总数;符合条件的情况数目;二者的比值就是其发生的概率详解:共6个数,大于3的有3个,P(大于3)=.故选D点睛:本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=5、B【解析】试题分析:平均数为(a2 + b2 + c2 )=(35-6)=3;原来的方差:;新的方差:,故选B.考点: 平均数;方差.6、A【解析】分类讨论:当a=5时,原方程变形一元一次方程,有一个实数解;当

11、a5时,根据判别式的意义得到a1且a5时,方程有两个实数根,然后综合两种情况即可得到满足条件的a的范围【详解】当a=5时,原方程变形为-4x-1=0,解得x=-;当a5时,=(-4)2-4(a-5)(-1)0,解得a1,即a1且a5时,方程有两个实数根,所以a的取值范围为a1故选A【点睛】本题考查了一元二次方程ax2+bx+c=0(a0)的根的判别式=b2-4ac:当0,方程有两个不相等的实数根;当=0,方程有两个相等的实数根;当0,方程没有实数根也考查了一元二次方程的定义7、B【解析】根据题意连接AD,再根据同弧的圆周角相等,即可计算的的大小.【详解】解:连接,为的直径,故选:B【点睛】本题

12、主要考查圆弧的性质,同弧的圆周角相等,这是考试的重点,应当熟练掌握.8、D【解析】分析:根据一元二次方程根与系数的关系求出x1x2和x1x2的值,然后代入x1x2x1x2计算即可.详解:由题意得,a=1,b=-1,c=-2,x1x2x1x2=1+(-2)=-1.故选D.点睛:本题考查了一元二次方程ax2+bx+c=0(a0)根与系数的关系,若x1,x2为方程的两个根,则x1,x2与系数的关系式:, .9、D【解析】由AB的垂直平分MN交AC于D,根据线段垂直平分线的性质,即可求得AD=BD,又由CDB的周长为:BC+CD+BD=BC+CD+AD=BC+AC,即可求得答案【详解】解:MN是线段A

13、B的垂直平分线,ADBD,ABAC10,BD+CDAD+CDAC10,BCD的周长AC+BC10+616,故选D【点睛】此题考查了线段垂直平分线的性质,比较简单,注意数形结合思想与转化思想的应用10、B【解析】试题分析:科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数将13000用科学记数法表示为:1.31故选B考点:科学记数法表示较大的数二、填空题(本大题共6个小题,每小题3分,共18分)11、可添ABD=CBD或AD=CD【解析】由A

14、B=BC结合图形可知这两个三角形有两组边对应相等,添加一组边利用SSS证明全等,也可以添加一对夹角相等,利用SAS证明全等,据此即可得答案.【详解】.可添ABD=CBD或AD=CD,ABD=CBD,在ABD和CBD中,ABDCBD(SAS);AD=CD,在ABD和CBD中,ABDCBD(SSS),故答案为ABD=CBD或AD=CD【点睛】本题考查了三角形全等的判定,结合图形与已知条件灵活应用全等三角形的判定方法是解题的关键. 熟记全等三角形的判定方法有:SSS,SAS,ASA,AAS12、1【解析】试题分析:利用相似三角形的相似比,列出方程,通过解方程求出旗杆的高度即可解:同一时刻物高与影长成

15、正比例设旗杆的高是xm1.6:1.2=x:9x=1即旗杆的高是1米故答案为1考点:相似三角形的应用13、1【解析】设大量角器的左端点是A,小量角器的圆心是B,连接AP,BP,则APB=90,ABP=65,因而PAB=9065=25,在大量角器中弧PB所对的圆心角是1,因而P在大量角器上对应的度数为1故答案为114、1【解析】找到立方等于27的数即可解:11=27,27的立方根是1,故答案为1考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算15、1【解析】分析:所得圆柱的主视图是一个矩形,矩形的宽是3,长是2详解:矩形的周长=3+3+2+2=1.点睛:本题比较容易,考查三视图和学生的

16、空间想象能力以及计算矩形的周长16、36或4.【解析】(3)当BD=BC时,过B点作GHAD,则BGE=90,当BC=BD时,AG=DH=DC=8,由AE=3,AB=36,得BE=3由翻折的性质,得BE=BE=3,EG=AGAE=83=5,BG=33,BH=GHBG=3633=4,DB=;(3)当DB=CD时,则DB=36(易知点F在BC上且不与点C、B重合);(3)当CB=CD时,EB=EB,CB=CB,点E、C在BB的垂直平分线上,EC垂直平分BB,由折叠可知点F与点C重合,不符合题意,舍去综上所述,DB的长为36或故答案为36或考点:3翻折变换(折叠问题);3分类讨论三、解答题(共8题,

17、共72分)17、(1)(4,6);y=1x18x+6(1);(3)点P的坐标为(3,5)或()【解析】(1)已知B(4,m)在直线y=x+1上,可求得m的值,抛物线图象上的A、B两点坐标,可将其代入抛物线的解析式中,通过联立方程组即可求得待定系数的值(1)要弄清PC的长,实际是直线AB与抛物线函数值的差可设出P点横坐标,根据直线AB和抛物线的解析式表示出P、C的纵坐标,进而得到关于PC与P点横坐标的函数关系式,根据函数的性质即可求出PC的最大值(3)根据顶点问题分情况讨论,若点P为直角顶点,此图形不存在,若点A为直角顶点,根据已知解析式与点坐标,可求出未知解析式,再联立抛物线的解析式,可求得C

18、点的坐标;若点C为直角顶点,可根据点的对称性求出结论.【详解】解:(1)B(4,m)在直线y=x+1上,m=4+1=6,B(4,6),故答案为(4,6);A(,),B(4,6)在抛物线y=ax1+bx+6上,解得,抛物线的解析式为y=1x18x+6;(1)设动点P的坐标为(n,n+1),则C点的坐标为(n,1n18n+6),PC=(n+1)(1n18n+6),=1n1+9n4,=1(n)1+,PC0,当n=时,线段PC最大且为(3)PAC为直角三角形,i)若点P为直角顶点,则APC=90由题意易知,PCy轴,APC=45,因此这种情形不存在;ii)若点A为直角顶点,则PAC=90如图1,过点A

19、(,)作ANx轴于点N,则ON=,AN=过点A作AM直线AB,交x轴于点M,则由题意易知,AMN为等腰直角三角形,MN=AN=,OM=ON+MN=+=3,M(3,0)设直线AM的解析式为:y=kx+b,则:,解得,直线AM的解析式为:y=x+3 又抛物线的解析式为:y=1x18x+6 联立式,解得:或(与点A重合,舍去),C(3,0),即点C、M点重合当x=3时,y=x+1=5,P1(3,5);iii)若点C为直角顶点,则ACP=90y=1x18x+6=1(x1)11,抛物线的对称轴为直线x=1如图1,作点A(,)关于对称轴x=1的对称点C,则点C在抛物线上,且C(,)当x=时,y=x+1=P

20、1(,)点P1(3,5)、P1(,)均在线段AB上,综上所述,PAC为直角三角形时,点P的坐标为(3,5)或(,)【点睛】本题考查了二次函数的综合题,解题的关键是熟练的掌握二次函数的应用.18、17.3米.【解析】分析:过点C作于D,根据,得到 ,在中,解三角形即可得到河的宽度.详解:过点C作于D, 米,在中, 米,米答:这条河的宽是米点睛:考查解直角三角形的应用,作出辅助线,构造直角三角形是解题的关键.19、(1)10;(2)的长为【解析】(1)利用勾股定理求解;(2)过点作于,利用角平分线的性质得到CD=DE,然后根据HL定理证明,设,根据勾股定理列方程求解.【详解】解:(1) 在中, ;

21、(2 )过点作于,平分,在和中 , .设,则在中, 解得即的长为【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,勾股定理,全等三角形的判定与性质,难点在于(2)多次利用勾股定理20、(1)120,补图见解析;(2)96;(3)960人.【解析】(1)由“不合格”的人数除以占的百分比求出总人数,确定出“优秀”的人数,以及一般的百分比,补全统计图即可;(2)求出“一般”与“优秀”占的百分比,乘以总人数即可得到结果;(3)求出达标占的百分比,乘以1200即可得到结果【详解】(1)根据题意得:2420%=120(人),则“优秀”人数为120(24+36)=60(人),“一般”占的百分比为10

22、0%=30%,补全统计图,如图所示:(2)根据题意得:36+60=96(人),则达标的人数为96人;(3)根据题意得:1200=960(人),则全校达标的学生有960人故答案为(1)120;(2)96人【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小21、(1)yx2+2x3;(2)点P的坐标为(2,21)或(2,5);(3)【解析】(1)先根据点A坐标及对称轴得出点B坐标,再利用待定系数法求解可得;(2)利用(1)得到的解析式,可设点P的坐标为(a,

23、a2+2a3),则点P到OC的距离为|a|然后依据SPOC2SBOC列出关于a的方程,从而可求得a的值,于是可求得点P的坐标;(3)先求得直线AC的解析式,设点D的坐标为(x,x2+2x3),则点Q的坐标为(x,x3),然后可得到QD与x的函数的关系,最后利用配方法求得QD的最大值即可【详解】解:(1)抛物线与x轴的交点A(3,0),对称轴为直线x1,抛物线与x轴的交点B的坐标为(1,0),设抛物线解析式为ya(x+3)(x1),将点C(0,3)代入,得:3a3,解得a1,则抛物线解析式为y(x+3)(x1)x2+2x3;(2)设点P的坐标为(a,a2+2a3),则点P到OC的距离为|a|SP

24、OC2SBOC,OC|a|2OCOB,即3|a|231,解得a2当a2时,点P的坐标为(2,21);当a2时,点P的坐标为(2,5)点P的坐标为(2,21)或(2,5)(3)如图所示:设AC的解析式为ykx3,将点A的坐标代入得:3k30,解得k1,直线AC的解析式为yx3设点D的坐标为(x,x2+2x3),则点Q的坐标为(x,x3)QDx3( x2+2x3)x3x22x+3x23x(x2+3x+)(x+)2+, 当x时,QD有最大值,QD的最大值为【点睛】本题主要考查了二次函数综合题,解题的关键是熟练掌握二次函数的性质和应用22、(1)();(2)定价为19元时,利润最大,最大利润是1210

25、元.(3)不能销售完这批蜜柚. 【解析】【分析】(1)根据图象利用待定系数法可求得函数解析式,再根据蜜柚销售不会亏本以及销售量大于0求得自变量x的取值范围;(2)根据利润=每千克的利润销售量,可得关于x的二次函数,利用二次函数的性质即可求得;(3)先计算出每天的销量,然后计算出40天销售总量,进行对比即可得.【详解】(1)设 ,将点(10,200)、(15,150)分别代入,则,解得 ,蜜柚销售不会亏本,又, , ;(2) 设利润为元,则 =, 当 时, 最大为1210, 定价为19元时,利润最大,最大利润是1210元;(3) 当 时,11040=44004800,不能销售完这批蜜柚.【点睛】

26、 本题考查了一次函数的应用、二次函数的应用,弄清题意,找出数量间的关系列出函数解析式是解题的关键.23、(1)甲型号的产品有10万只,则乙型号的产品有10万只;(2)安排甲型号产品生产15万只,乙型号产品生产5万只,可获得最大利润91万元【解析】(1)设甲型号的产品有x万只,则乙型号的产品有(20x)万只,根据销售收入为300万元可列方程18x+12(20x)=300,解方程即可;(2)设安排甲型号产品生产y万只,则乙型号产品生产(20y)万只,根据公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元列出不等式,求出不等式的解集确定出y的范围,再根据利润=售价成本列出W与y的一次函

27、数,根据y的范围确定出W的最大值即可【详解】(1)设甲型号的产品有x万只,则乙型号的产品有(20x)万只,根据题意得:18x+12(20x)=300,解得:x=10,则20x=2010=10,则甲、乙两种型号的产品分别为10万只,10万只;(2)设安排甲型号产品生产y万只,则乙型号产品生产(20y)万只,根据题意得:13y+8.8(20y)239,解得:y15,根据题意得:利润W=(18121)y+(1280.8)(20y)=1.8y+64,当y=15时,W最大,最大值为91万元所以安排甲型号产品生产15万只,乙型号产品生产5万只时,可获得最大利润为91万元.考点:一元一次方程的应用;一元一次

28、不等式的应用;一次函数的应用.24、(1);(2)不能成为平行四边形,理由见解析【解析】(1)将点B坐标代入一次函数上可得出点B的坐标,由点B的坐标,利用待定系数法可求出反比例函数解析式,根据点的坐标为,可以判断出,再由点P的横坐标可得出点P的坐标是,结合PDx轴可得出点D的坐标,再利用三角形的面积公式即可用含的式子表示出MPD的面积;(2)当P为BM的中点时,利用中点坐标公式可得出点P的坐标,结合PDx轴可得出点D的坐标,由折叠的性质可得出直线MN的解析式,利用一次函数图象上点的坐标特征可得出点C的坐标,由点P,C,D的坐标可得出PDPC,由此即可得出四边形BDMC不能成为平行四边形【详解】解:(1)点在直线上,点在的图像上,设,则记的面积为,(2)当点为中点时,其坐标为,直线在轴下方的部分沿轴翻折得表示的函数表达式是:,与不能互相平分,四边形不能成为平行四边形【点睛】本题考查了一次函数图象上点的坐标特征、待定系数法求反比例函数解析式、反比例函数图象上点的坐标特征、三角形的面积、折叠的性质以及平行四边形的判定,解题的关键是:(1)利用一次(反比例)函数图象上点的坐标特征,找出点P,M,D的坐标;(2)利用平行四边形的对角线互相平分,找出四边形BDMC不能成为平行四边形

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁