《天津市两校2023届中考适应性考试数学试题含解析.doc》由会员分享,可在线阅读,更多相关《天津市两校2023届中考适应性考试数学试题含解析.doc(28页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1若实数 a,b 满足|a|b|,则与实数 a,b 对应的点在数轴上的位置可以是( )ABCD2提出“金山银山,不如绿水青山”,国家环保部大力治理环境污染,空气质量明显好转,将惠及13.75亿中国人,这个数字用科学记数法表示为()A13.751
2、06 B13.75105 C1.375108 D1.3751093如图,在ABC中,点D在AB边上,DEBC,与边AC交于点E,连结BE,记ADE,BCE的面积分别为S1,S2,()A若2ADAB,则3S12S2B若2ADAB,则3S12S2C若2ADAB,则3S12S2D若2ADAB,则3S12S24下列各点中,在二次函数的图象上的是( )ABCD5五名女生的体重(单位:kg)分别为:37、40、38、42、42,这组数据的众数和中位数分别是()A2、40 B42、38 C40、42 D42、406小桐把一副直角三角尺按如图所示的方式摆放在一起,其中,则等于ABCD7如图,AD,CE分别是A
3、BC的中线和角平分线若AB=AC,CAD=20,则ACE的度数是()A20B35C40D708已知一次函数且随的增大而增大,那么它的图象不经过()A第一象限B第二象限C第三象限D第四象限9一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、1随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是()ABCD10下图是由八个相同的小正方体组合而成的几何体,其左视图是( )ABCD11下列运算正确的是()Aa4+a2=a4B(x2y)3=x6y3C(mn)2=m2n2Db6b2=b312如图,P为O外一点,PA、PB分别切O于点A、B,CD切O于点
4、E,分别交PA、PB于点C、D,若PA6,则PCD的周长为()A8B6C12D10二、填空题:(本大题共6个小题,每小题4分,共24分)13已知线段厘米,厘米,线段c是线段a和线段b的比例中项,线段c的长度等于_厘米14如图,在ABC中,AB=AC,以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD,若A=32,则CDB的大小为_度15关于x的一元二次方程kx22x+1=0有两个不相等的实数根,则k的取值范围是 16一个不透明的袋子中装有6个球,其中2个红球、4个黑球,这些球除颜色外无其他差别现从袋子中随机摸出一个球,则它是黑球的概率是_17分解因式:(x22x)2(2xx2)
5、_18某菜农搭建了一个横截面为抛物线的大棚,尺寸如图,若菜农身高为1.8m,他在不弯腰的情况下,在棚内的横向活动范围是_m三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,AB是O的直径,弧CDAB,垂足为H,P为弧AD上一点,连接PA、PB,PB交CD于E(1)如图(1)连接PC、CB,求证:BCP=PED;(2)如图(2)过点P作O的切线交CD的延长线于点E,过点A向PF引垂线,垂足为G,求证:APG=F;(3)如图(3)在图(2)的条件下,连接PH,若PH=PF,3PF=5PG,BE=2,求O的直径AB20(6分)如图,在平行四边形ABCD
6、中,过点A作AEDC,垂足为点E,连接BE,点F为BE上一点,连接AF,AFE=D(1)求证:BAF=CBE;(2)若AD=5,AB=8,sinD=求证:AF=BF21(6分)如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,其对称轴交抛物线于点D,交x轴于点E,已知OB=OC=1(1)求抛物线的解析式及点D的坐标;(2)连接BD,F为抛物线上一动点,当FAB=EDB时,求点F的坐标;(3)平行于x轴的直线交抛物线于M、N两点,以线段MN为对角线作菱形MPNQ,当点P在x轴上,且PQ=MN时,求菱形对角线MN的长22(8分)如图,ABC三个顶点的坐标分别为A(1,1),B(4
7、,2),C(3,4)(1)请画出将ABC向左平移4个单位长度后得到的图形A1B1C1;(2)请画出ABC关于原点O成中心对称的图形A2B2C2;(3)在x轴上找一点P,使PA+PB的值最小,请直接写出点P的坐标23(8分)下面是“作三角形一边上的高”的尺规作图过程已知:ABC求作:ABC的边BC上的高AD作法:如图2,(1)分别以点B和点C为圆心,BA,CA为半径作弧,两弧相交于点E;(2)作直线AE交BC边于点D所以线段AD就是所求作的高请回答:该尺规作图的依据是_24(10分)如图,在平面直角坐标系中,A、B为x轴上两点,C、D为y轴上的两点,经过点A、C、B的抛物线的一部分C1与经过点A
8、、D、B的抛物线的一部分C2组合成一条封闭曲线,我们把这条封闭曲线称为“蛋线”已知点C的坐标为(0,),点M是抛物线C2:(0)的顶点(1)求A、B两点的坐标;(2)“蛋线”在第四象限上是否存在一点P,使得PBC的面积最大?若存在,求出PBC面积的最大值;若不存在,请说明理由;(3)当BDM为直角三角形时,求的值25(10分)现有一次函数ymx+n和二次函数ymx2+nx+1,其中m0,若二次函数ymx2+nx+1经过点(2,0),(3,1),试分别求出两个函数的解析式若一次函数ymx+n经过点(2,0),且图象经过第一、三象限二次函数ymx2+nx+1经过点(a,y1)和(a+1,y2),且
9、y1y2,请求出a的取值范围若二次函数ymx2+nx+1的顶点坐标为A(h,k)(h0),同时二次函数yx2+x+1也经过A点,已知1h1,请求出m的取值范围26(12分)在直角坐标系中,过原点O及点A(8,0),C(0,6)作矩形OABC、连结OB,点D为OB的中点,点E是线段AB上的动点,连结DE,作DFDE,交OA于点F,连结EF已知点E从A点出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒如图1,当t=3时,求DF的长如图2,当点E在线段AB上移动的过程中,DEF的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tanDEF的值连结AD,当AD将DEF分成的两部
10、分的面积之比为1:2时,求相应的t的值27(12分)如图,AB为O的直径,C为O上一点,ABC的平分线交O于点D,DEBC于点E试判断DE与O的位置关系,并说明理由;过点D作DFAB于点F,若BE=3,DF=3,求图中阴影部分的面积参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】根据绝对值的意义即可解答【详解】由|a|b|,得a与原点的距离比b与原点的距离远, 只有选项D符合,故选D【点睛】本题考查了实数与数轴,熟练运用绝对值的意义是解题关键2、D【解析】用科学记数法表示较大的数时,一般形式为a10n,其中1|a|1
11、0,n为整数,据此判断即可【详解】13.75亿=1.375109.故答案选D.【点睛】本题考查的知识点是科学记数法,解题的关键是熟练的掌握科学记数法.3、D【解析】根据题意判定ADEABC,由相似三角形的面积之比等于相似比的平方解答【详解】如图,在ABC中,DEBC,ADEABC,若1ADAB,即时,此时3S1S1+SBDE,而S1+SBDE1S1但是不能确定3S1与1S1的大小,故选项A不符合题意,选项B不符合题意若1ADAB,即时,此时3S1S1+SBDE1S1,故选项C不符合题意,选项D符合题意故选D【点睛】考查了相似三角形的判定与性质,三角形相似的判定一直是中考考查的热点之一,在判定两
12、个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形4、D【解析】将各选项的点逐一代入即可判断【详解】解:当x=1时,y=-1,故点不在二次函数的图象;当x=2时,y=-4,故点和点不在二次函数的图象;当x=-2时,y=-4,故点在二次函数的图象;故答案为:D【点睛】本题考查了判断一个点是否在二次函数图象上,解题的关键是将点代入函数解析式5、D【解析】【分析】根据众数和中位数的定义分别进行求解即可得.【详解】这组数据中42出现了两次,出现次数最多,所以这组数据的众数是42,将这组数据从小到大排序为:37,
13、38,40,42,42,所以这组数据的中位数为40,故选D.【点睛】本题考查了众数和中位数,一组数据中出现次数最多的数据叫做众数将一组数据从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数.6、C【解析】根据三角形的内角和定理和三角形外角性质进行解答即可【详解】如图:,=,故选C【点睛】本题考查了三角形内角和定理、三角形外角的性质、熟练掌握相关定理及性质以及一副三角板中各个角的度数是解题的关键.7、B【解析】先根据等腰三角形的性质以及三角形内角和定理求出CAB=2CAD=40,B=ACB=(180-CAB)=70再利用角平分线定义即可得出ACE=ACB=35【
14、详解】AD是ABC的中线,AB=AC,CAD=20,CAB=2CAD=40,B=ACB=(180-CAB)=70CE是ABC的角平分线,ACE=ACB=35故选B【点睛】本题考查了等腰三角形的两个底角相等的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合的性质,三角形内角和定理以及角平分线定义,求出ACB=70是解题的关键8、B【解析】根据一次函数的性质:k0,y随x的增大而增大;k0,y随x的增大而减小,进行解答即可【详解】解:一次函数y=kx-3且y随x的增大而增大,它的图象经过一、三、四象限,不经过第二象限,故选:B【点睛】本题考查了一次函数的性质,掌握一次函数所经过的象限
15、与k、b的值有关是解题的关键.9、C【解析】【分析】画树状图展示所有16种等可能的结果数,再找出两次抽取的卡片上数字之积为偶数的结果数,然后根据概率公式求解【详解】画树状图为:共有16种等可能的结果数,其中两次抽取的卡片上数字之积为偶数的结果数为12,所以两次抽取的卡片上数字之积为偶数的概率=,故选C【点睛】本题考查了列表法与树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比 10、B【解析】解:找到从左面看所得到的图形,从左面可看到从左往右三列小正方形的个数为:2,3,1故选B11、B【解析】分析:根据合并同类项,积的乘方,完全平方公式,同底数幂相除的性质,逐一计算判断即可.详解
16、:根据同类项的定义,可知a4与a2不是同类项,不能计算,故不正确;根据积的乘方,等于个个因式分别乘方,可得(x2y)3=x6y3,故正确;根据完全平方公式,可得(m-n)2=m2-2mn+n2,故不正确;根据同底数幂的除法,可知b6b2=b4,不正确.故选B.点睛:此题主要考查了合并同类项,积的乘方,完全平方公式,同底数幂相除的性质,熟记并灵活运用是解题关键.12、C【解析】由切线长定理可求得PAPB,ACCE,BDED,则可求得答案【详解】PA、PB分别切O于点A、B,CD切O于点E,PAPB6,ACEC,BDED,PC+CD+PDPC+CE+DE+PDPA+AC+PD+BDPA+PB6+6
17、12,即PCD的周长为12,故选:C【点睛】本题主要考查切线的性质,利用切线长定理求得PAPB、ACCE和BDED是解题的关键二、填空题:(本大题共6个小题,每小题4分,共24分)13、1【解析】根据比例中项的定义,列出比例式即可得出中项,注意线段不能为负【详解】线段c是线段a和线段b的比例中项,解得(线段是正数,负值舍去),故答案为:1【点睛】本题考查比例线段、比例中项等知识,比例中项的平方等于两条线段的乘积,熟练掌握基本概念是解题关键.14、1【解析】根据等腰三角形的性质以及三角形内角和定理在ABC中可求得ACB=ABC=74,根据等腰三角形的性质以及三角形外角的性质在BCD中可求得CDB
18、=CBD=ACB=1【详解】AB=AC,A=32,ABC=ACB=74,又BC=DC,CDB=CBD=ACB=1,故答案为1【点睛】本题主要考查等腰三角形的性质,三角形外角的性质,掌握等边对等角是解题的关键,注意三角形内角和定理的应用15、k1且k1【解析】试题分析:根据一元二次方程的定义和的意义得到k1且1,即(2)24k11,然后解不等式即可得到k的取值范围解:关于x的一元二次方程kx22x+1=1有两个不相等的实数根,k1且1,即(2)24k11,解得k1且k1k的取值范围为k1且k1故答案为k1且k1考点:根的判别式;一元二次方程的定义16、【解析】根据概率的概念直接求得.【详解】解:
19、46=.故答案为:.【点睛】本题用到的知识点为:概率=所求情况数与总情况数之比.17、x(x2)(x1)2【解析】先整理出公因式(x2-2x),提取公因式后再对余下的多项式整理,利用提公因式法分解因式和完全平方公式法继续进行因式分解【详解】 解:(x22x)2(2xx2) =(x22x)2+(x22x) =(x22x)(x22x+1) =x(x2)(x1)2故答案为x(x2)(x1)2【点睛】此题考查了因式分解-提公因式法和公式法,熟练掌握这两种方法是解题的关键.18、1【解析】设抛物线的解析式为:y=ax2+b,由图得知点(0,2.4),(1,0)在抛物线上,列方程组得到抛物线的解析式为:y
20、=x2+2.4,根据题意求出y=1.8时x的值,进而求出答案;【详解】设抛物线的解析式为:y=ax2+b,由图得知:点(0,2.4),(1,0)在抛物线上,解得:,抛物线的解析式为:y=x2+2.4,菜农的身高为1.8m,即y=1.8,则1.8=x2+2.4,解得:x=(负值舍去)故他在不弯腰的情况下,横向活动范围是:1米,故答案为1三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)见解析;(2)见解析;(3)AB=1【解析】(1)由垂径定理得出CPB=BCD,根据BCP=BCD+PCD=CPB+PCD=PED即可得证;(2)连接OP,知OP=OB,先
21、证FPE=FEP得F+2FPE=180,再由APG+FPE=90得2APG+2FPE=180,据此可得2APG=F,据此即可得证;(3)连接AE,取AE中点N,连接HN、PN,过点E作EMPF,先证PAE=F,由tanPAE=tanF得,再证GAP=MPE,由sinGAP=sinMPE得,从而得出,即MF=GP,由3PF=5PG即,可设PG=3k,得PF=5k、MF=PG=3k、PM=2k,由FPE=PEF知PF=EF=5k、EM=4k及PE=2k、AP=k,证PEM=ABP得BP=3k,继而可得BE=k=2,据此求得k=2,从而得出AP、BP的长,利用勾股定理可得答案【详解】证明:(1)AB
22、是O的直径且ABCD,CPB=BCD,BCP=BCD+PCD=CPB+PCD=PED,BCP=PED;(2)连接OP,则OP=OB,OPB=OBP,PF是O的切线,OPPF,则OPF=90,FPE=90OPE,PEF=HEB=90OBP,FPE=FEP,AB是O的直径,APB=90,APG+FPE=90,2APG+2FPE=180,F+FPE+PEF=180,F+2FPE=1802APG=F,APG= F;(3)连接AE,取AE中点N,连接HN、PN,过点E作EMPF于M,由(2)知APB=AHE=90,AN=EN,A、H、E、P四点共圆,PAE=PHF,PH=PF,PHF=F,PAE=F,t
23、anPAE=tanF,由(2)知APB=G=PME=90,GAP=MPE,sinGAP=sinMPE,则,MF=GP,3PF=5PG,设PG=3k,则PF=5k,MF=PG=3k,PM=2k由(2)知FPE=PEF,PF=EF=5k,则EM=4k,tanPEM=,tanF=,tanPAE=,PE=,AP=k,APG+EPM=EPM+PEM=90,APG=PEM,APG+OPA=ABP+BAP=90,且OAP=OPA,APG=ABP,PEM=ABP,则tanABP=tanPEM,即,则BP=3k,BE=k=2,则k=2,AP=3、BP=6,根据勾股定理得,AB=1【点睛】本题主要考查圆的综合问题
24、,解题的关键是掌握圆周角定理、四点共圆条件、相似三角形的判定与性质、三角函数的应用等知识点20、(1)见解析;(2)2.【解析】(1)根据相似三角形的判定,易证ABFBEC,从而可以证明BAF=CBE成立;(2)根据锐角三角函数和三角形的相似可以求得AF的长【详解】(1)证明:四边形ABCD是平行四边形,ABCD,ADBC,AD=BC,D+C=180,ABF=BEC,AFB+AFE=180,AFE=D,C=AFB,ABFBEC,BAF=CBE;(2)AEDC,AD=5,AB=8,sinD=,AE=4,DE=3EC=5AEDC,ABDC,AED=BAE=90,在RtABE中,根据勾股定理得:BE
25、=BC=AD=5,由(1)得:ABFBEC, =即 =解得:AF=BF=2【点睛】本题考查相似三角形的判定与性质、平行四边形的性质、解直角三角形,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答21、 (1) ,点D的坐标为(2,-8) (2) 点F的坐标为(7,)或(5,)(3) 菱形对角线MN的长为或. 【解析】分析:(1)利用待定系数法,列方程求二次函数解析式.(2)利用解析法,FAB=EDB, tanFAG=tanBDE,求出F点坐标.(3)分类讨论,当MN在x轴上方时,在x轴下方时分别计算MN.详解:(1)OB=OC=1,B(1,0),C(0,-1).,解得,
26、抛物线的解析式为. =,点D的坐标为(2,-8). (2)如图,当点F在x轴上方时,设点F的坐标为(x,).过点F作FGx轴于点G,易求得OA=2,则AG=x+2,FG=.FAB=EDB,tanFAG=tanBDE,即,解得,(舍去).当x=7时,y=,点F的坐标为(7,). 当点F在x轴下方时,设同理求得点F的坐标为(5,).综上所述,点F的坐标为(7,)或(5,). (3)点P在x轴上,根据菱形的对称性可知点P的坐标为(2,0).如图,当MN在x轴上方时,设T为菱形对角线的交点.PQ=MN,MT=2PT.设TP=n,则MT=2n. M(2+2n,n).点M在抛物线上,即.解得,(舍去).M
27、N=2MT=4n=.当MN在x轴下方时,设TP=n,得M(2+2n,-n).点M在抛物线上,即.解得,(舍去).MN=2MT=4n=.综上所述,菱形对角线MN的长为或. 点睛:1.求二次函数的解析式(1)已知二次函数过三个点,利用一般式,yax2bxc().列方程组求二次函数解析式.(2)已知二次函数与x轴的两个交点(,利用双根式,y=()求二次函数解析式,而且此时对称轴方程过交点的中点,.2.处理直角坐标系下,二次函数与几何图形问题:第一步要写出每个点的坐标(不能写出来的,可以用字母表示),写已知点坐标的过程中,经常要做坐标轴的垂线,第二步,利用特殊图形的性质和函数的性质,往往是解决问题的钥
28、匙.22、(1)详见解析;(2)详见解析;(3)图见解析,点P坐标为(2,0)【解析】(1)根据网格结构找出点A、B、C平移后的对应点的位置,然后顺次连接即可;(2)找出点A、B、C关于原点O的对称点的位置,然后顺次连接即可;(3)找出A的对称点A,连接BA,与x轴交点即为P【详解】(1)如图1所示,A1B1C1,即为所求:(2)如图2所示,A2B2C2,即为所求:(3)找出A的对称点A(1,1),连接BA,与x轴交点即为P;如图3所示,点P即为所求,点P坐标为(2,0)【点睛】本题考查作图-旋转变换,平移变换,轴对称最短问题等知识,得出对应点位置是解题关键23、到一条线段两个端点距离相等的点
29、,在这条线段的垂直平分线上;三角形的高的定义;两点确定一条直线【解析】利用作法和线段垂直平分线定理的逆定理可得到BC垂直平分AE,然后根据三角形高的定义得到AD为高【详解】解:由作法得BC垂直平分AE,所以该尺规作图的依据为到一条线段两个端点距离相等的点,在这条线段的垂直平分线上;三角形的高的定义;两点确定一条直线故答案为到一条线段两个端点距离相等的点,在这条线段的垂直平分线上;三角形的高的定义;两点确定一条直线【点睛】此题考查三角形高的定义,解题的关键在于利用线段垂直平分线定理的逆定理求解.24、(1)A(,0)、B(3,0)(2)存在SPBC最大值为 (3)或时,BDM为直角三角形【解析】
30、(1)在中令y=0,即可得到A、B两点的坐标(2)先用待定系数法得到抛物线C1的解析式,由SPBC = SPOC+ SBOPSBOC得到PBC面积的表达式,根据二次函数最值原理求出最大值(3)先表示出DM2,BD2,MB2,再分两种情况:BMD=90时;BDM=90时,讨论即可求得m的值【详解】解:(1)令y=0,则,m0,解得:,A(,0)、B(3,0)(2)存在理由如下:设抛物线C1的表达式为(),把C(0,)代入可得,1的表达式为:,即设P(p,), SPBC = SPOC+ SBOPSBOC=0,当时,SPBC最大值为(3)由C2可知: B(3,0),D(0,),M(1,),BD2=,
31、BM2=,DM2=MBD90, 讨论BMD=90和BDM=90两种情况:当BMD=90时,BM2+ DM2= BD2,即=,解得:,(舍去)当BDM=90时,BD2+ DM2= BM2,即=,解得:,(舍去) 综上所述,或时,BDM为直角三角形25、(1)yx2,y=x2+1;(2)a;(3)m2或m1【解析】(1)直接将点代入函数解析式,用待定系数法即可求解函数解析式;(2)点(2,1)代入一次函数解析式,得到n2m,利用m与n的关系能求出二次函数对称轴x1,由一次函数经过一、三象限可得m1,确定二次函数开口向上,此时当 y1y2,只需让a到对称轴的距离比a1到对称轴的距离大即可求a的范围(
32、3)将A(h,k)分别代入两个二次函数解析式,再结合对称抽得h,将得到的三个关系联立即可得到,再由题中已知1h1,利用h的范围求出m的范围【详解】(1)将点(2,1),(3,1),代入一次函数ymx+n中,解得,一次函数的解析式是yx2,再将点(2,1),(3,1),代入二次函数ymx2+nx+1,解得,二次函数的解析式是(2)一次函数ymx+n经过点(2,1),n2m,二次函数ymx2+nx+1的对称轴是x,对称轴为x1,又一次函数ymx+n图象经过第一、三象限,m1,y1y2,1a1+a1,a(3)ymx2+nx+1的顶点坐标为A(h,k),kmh2+nh+1,且h,又二次函数yx2+x+
33、1也经过A点,kh2+h+1,mh2+nh+1h2+h+1,又1h1,m2或m1【点睛】本题考点:点与函数的关系;二次函数的对称轴与函数值关系;待定系数法求函数解析式;不等式的解法;数形结合思想是解决二次函数问题的有效方法26、(1)3;(2)DEF的大小不变,tanDEF=;(3)或【解析】(1)当t=3时,点E为AB的中点,A(8,0),C(0,6),OA=8,OC=6,点D为OB的中点,DEOA,DE=OA=4,四边形OABC是矩形,OAAB,DEAB,OAB=DEA=90,又DFDE,EDF=90,四边形DFAE是矩形,DF=AE=3;(2)DEF的大小不变;理由如下:作DMOA于M,
34、DNAB于N,如图2所示:四边形OABC是矩形,OAAB,四边形DMAN是矩形,MDN=90,DMAB,DNOA,, ,点D为OB的中点,M、N分别是OA、AB的中点,DM=AB=3,DN=OA=4,EDF=90,FDM=EDN,又DMF=DNE=90,DMFDNE,EDF=90,tanDEF=;(3)作DMOA于M,DNAB于N,若AD将DEF的面积分成1:2的两部分,设AD交EF于点G,则点G为EF的三等分点;当点E到达中点之前时,如图3所示,NE=3t,由DMFDNE得:MF=(3t),AF=4+MF=t+,点G为EF的三等分点,G(,),设直线AD的解析式为y=kx+b,把A(8,0)
35、,D(4,3)代入得: ,解得: ,直线AD的解析式为y=x+6,把G(,)代入得:t=;当点E越过中点之后,如图4所示,NE=t3,由DMFDNE得:MF=(t3),AF=4MF=t+,点G为EF的三等分点,G(,),代入直线AD的解析式y=x+6得:t=;综上所述,当AD将DEF分成的两部分的面积之比为1:2时,t的值为或.考点:四边形综合题.27、(1)DE与O相切,理由见解析;(2)阴影部分的面积为2【解析】(1)直接利用角平分线的定义结合平行线的判定与性质得出DEB=EDO=90,进而得出答案;(2)利用勾股定理结合扇形面积求法分别分析得出答案【详解】(1)DE与O相切,理由:连接DO,DO=BO,ODB=OBD,ABC的平分线交O于点D,EBD=DBO,EBD=BDO,DOBE,DEBC,DEB=EDO=90,DE与O相切;(2)ABC的平分线交O于点D,DEBE,DFAB,DE=DF=3,BE=3,BD=6,sinDBF=,DBA=30,DOF=60,sin60=,DO=2,则FO=,故图中阴影部分的面积为:【点睛】此题主要考查了切线的判定方法以及扇形面积求法等知识,正确得出DO的长是解题关键