山东省利津县联考2023届中考三模数学试题含解析.doc

上传人:lil****205 文档编号:87998207 上传时间:2023-04-19 格式:DOC 页数:17 大小:664.50KB
返回 下载 相关 举报
山东省利津县联考2023届中考三模数学试题含解析.doc_第1页
第1页 / 共17页
山东省利津县联考2023届中考三模数学试题含解析.doc_第2页
第2页 / 共17页
点击查看更多>>
资源描述

《山东省利津县联考2023届中考三模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《山东省利津县联考2023届中考三模数学试题含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1对于代数式ax2+bx+c(a0),下列说法正确的是( ) 如果存在两个实数pq,使得ap2+bp+c=aq2+bq+c

2、,则a+bx+c=a(x-p)(x-q)存在三个实数mns,使得am2+bm+c=an2+bn+c=as2+bs+c如果ac0,则一定存在两个实数mn,使am2+bm+c0an2+bn+c如果ac0,则一定存在两个实数mn,使am2+bm+c0an2+bn+cABCD2一元二次方程的根是( )ABCD3函数在同一直角坐标系内的图象大致是()ABCD4已知一次函数y=kx+b的图象如图,那么正比例函数y=kx和反比例函数y=在同一坐标系中的图象的形状大致是( ) ABCD5如图,则的度数为( )A115B110C105D656在3,1,0,1四个数中,比2小的数是()A3B1C0D17如图,由5

3、个完全相同的小正方体组合成一个立体图形,它的左视图是()ABCD8已知一组数据2、x、8、1、1、2的众数是2,那么这组数据的中位数是( )A3.1; B4; C2; D6.19已知,且,则的值为( )A2或12B2或C或12D或10已知关于x的方程x2+3x+a=0有一个根为2,则另一个根为()A5B1C2D511下列函数中,当x0时,y值随x值增大而减小的是()Ayx2Byx1CD12如图,函数ykxb(k0)与y (m0)的图象交于点A(2,3),B(6,1),则不等式kxb的解集为()ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,PA,PB是O是切线,A,B为

4、切点,AC是O的直径,若P=46,则BAC= 度14关于的分式方程的解为正数,则的取值范围是_15如图所示,点A1、A2、A3在x轴上,且OA1=A1A2=A2A3,分别过点A1、A2、A3作y轴的平行线,与反比例函数y=(x0)的图象分别交于点B1、B2、B3,分别过点B1、B2、B3作x轴的平行线,分别与y轴交于点C1、C2、C3,连接OB1、OB2、OB3,若图中三个阴影部分的面积之和为,则k= 16已知a+2,求a2+_17如图,O在ABC三边上截得的弦长相等,A=70,则BOC=_度18二次函数的图象与y轴的交点坐标是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证

5、明过程或演算步骤19(6分)如图,AM是ABC的中线,D是线段AM上一点(不与点A重合)DEAB交AC于点F,CEAM,连结AE(1)如图1,当点D与M重合时,求证:四边形ABDE是平行四边形;(2)如图2,当点D不与M重合时,(1)中的结论还成立吗?请说明理由(3)如图3,延长BD交AC于点H,若BHAC,且BH=AM求CAM的度数;当FH=,DM=4时,求DH的长20(6分)一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外都相同,其中红球有1个,若从中随机摸出一个球,这个球是白球的概率为求袋子中白球的个数;(请通过列式或列方程解答)随机摸出一个球后,放回并搅匀,再随机摸出一个球,

6、求两次都摸到相同颜色的小球的概率(请结合树状图或列表解答)21(6分)某小学为了了解学生每天完成家庭作业所用时间的情况,从每班抽取相同数量的学生进行调查,并将所得数据进行整理,制成条形统计图和扇形统计图如下:补全条形统计图;求扇形统计图扇形D的圆心角的度数;若该中学有2000名学生,请估计其中有多少名学生能在1.5小时内完成家庭作业?22(8分)如图,四边形ABCD内接于O,对角线AC为O的直径,过点C作AC的垂线交AD的延长线于点E,点F为CE的中点,连接DB,DC,DF求CDE的度数;求证:DF是O的切线;若AC=DE,求tanABD的值23(8分)某公司生产的某种产品每件成本为40元,经

7、市场调查整理出如下信息:该产品90天售量(n件)与时间(第x天)满足一次函数关系,部分数据如下表:时间(第x天)12310日销售量(n件)198196194?该产品90天内每天的销售价格与时间(第x天)的关系如下表:时间(第x天)1x5050x90销售价格(元/件)x+60100 (1)求出第10天日销售量;(2)设销售该产品每天利润为y元,请写出y关于x的函数表达式,并求出在90天内该产品的销售利润最大?最大利润是多少?(提示:每天销售利润=日销售量(每件销售价格每件成本))(3)在该产品销售的过程中,共有多少天销售利润不低于5400元,请直接写出结果.24(10分)某数学社团成员想利用所学

8、的知识测量某广告牌的宽度(图中线段MN的长),直线MN垂直于地面,垂足为点P在地面A处测得点M的仰角为58、点N的仰角为45,在B处测得点M的仰角为31,AB5米,且A、B、P三点在一直线上请根据以上数据求广告牌的宽MN的长(参考数据:sin580.85,cos580.53,tan581.1,sin310.52,cos310.86,tan310.1)25(10分)尺规作图:用直尺和圆规作图,不写作法,保留痕迹已知:如图,线段a,h求作:ABC,使AB=AC,且BAC=,高AD=h26(12分)已知抛物线yx2(2m+1)x+m2+m,其中m是常数(1)求证:不论m为何值,该抛物线与z轴一定有两

9、个公共点;(2)若该抛物线的对称轴为直线x,请求出该抛物线的顶点坐标27(12分)如图,分别以RtABC的直角边AC及斜边AB向外作等边ACD,等边ABE,已知BAC=30,EFAB,垂足为F,连接DF试说明AC=EF;求证:四边形ADFE是平行四边形参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、A【解析】设 (1)如果存在两个实数pq,使得ap2+bp+c=aq2+bq+c,则说明在中,当x=p和x=q时的y值相等,但并不能说明此时p、q是与x轴交点的横坐标,故中结论不一定成立;(2)若am2+bm+c=an2+bn+c=

10、as2+bs+c,则说明在中当x=m、n、s时,对应的y值相等,因此m、n、s中至少有两个数是相等的,故错误;(3)如果ac0,则b2-4ac0,则的图象和x轴必有两个不同的交点,所以此时一定存在两个实数mn,使am2+bm+c0an2+bn+c,故在结论正确;(4)如果ac0,则b2-4ac的值的正负无法确定,此时的图象与x轴的交点情况无法确定,所以中结论不一定成立.综上所述,四种说法中正确的是.故选A.2、D【解析】试题分析:此题考察一元二次方程的解法,观察发现可以采用提公因式法来解答此题原方程可化为:,因此或,所以故选D考点:一元二次方程的解法因式分解法提公因式法3、C【解析】根据a、b

11、的符号,针对二次函数、一次函数的图象位置,开口方向,分类讨论,逐一排除【详解】当a0时,二次函数的图象开口向上,一次函数的图象经过一、三或一、二、三或一、三、四象限,故A、D不正确;由B、C中二次函数的图象可知,对称轴x=-0,且a0,则b0,但B中,一次函数a0,b0,排除B故选C4、C【解析】试题分析:如图所示,由一次函数y=kx+b的图象经过第一、三、四象限,可得k1,b1因此可知正比例函数y=kx的图象经过第一、三象限,反比例函数y=的图象经过第二、四象限综上所述,符合条件的图象是C选项故选C考点:1、反比例函数的图象;2、一次函数的图象;3、一次函数图象与系数的关系5、A【解析】根据

12、对顶角相等求出CFB65,然后根据CDEB,判断出B115【详解】AFD65,CFB65,CDEB,B18065115,故选:A【点睛】本题考查了平行线的性质,知道“两直线平行,同旁内角互补”是解题的关键6、A【解析】因为正数是比0大的数,负数是比0小的数,正数比负数大;负数的绝对值越大,本身就越小,根据有理数比较大小的法则即可选出答案【详解】因为正数是比0大的数,负数是比0小的数,正数比负数大;负数的绝对值越大,本身就越小,所以在-3,-1,0,1这四个数中比-2小的数是-3,故选A【点睛】本题主要考查有理数比较大小,解决本题的关键是要熟练掌握比较有理数大小的方法.7、B【解析】试题分析:从

13、左面看易得第一层有2个正方形,第二层最左边有一个正方形故选B考点:简单组合体的三视图8、A【解析】数据组2、x、8、1、1、2的众数是2,x=2,这组数据按从小到大排列为:2、2、2、1、1、8,这组数据的中位数是:(2+1)2=3.1.故选A.9、D【解析】根据=5,=7,得,因为,则,则=5-7=-2或-5-7=-12.故选D.10、B【解析】根据关于x的方程x2+3x+a=0有一个根为-2,可以设出另一个根,然后根据根与系数的关系可以求得另一个根的值,本题得以解决【详解】关于x的方程x2+3x+a=0有一个根为-2,设另一个根为m,-2+m=,解得,m=-1,故选B11、D【解析】A、y

14、x2,对称轴x=0,当图象在对称轴右侧,y随着x的增大而增大;而在对称轴左侧,y随着x的增大而减小,故此选项错误B、k0,y随x增大而增大,故此选项错误C、B、k0,y随x增大而增大,故此选项错误D、y=(x0),反比例函数,k0,故在第一象限内y随x的增大而减小,故此选项正确12、B【解析】根据函数的图象和交点坐标即可求得结果【详解】解:不等式kx+b 的解集为:-6x0或x2,故选B【点睛】此题考查反比例函数与一次函数的交点问题,解题关键是注意掌握数形结合思想的应用二、填空题:(本大题共6个小题,每小题4分,共24分)13、1【解析】由PA、PB是圆O的切线,根据切线长定理得到PA=PB,

15、即三角形APB为等腰三角形,由顶角的度数,利用三角形的内角和定理求出底角的度数,再由AP为圆O的切线,得到OA与AP垂直,根据垂直的定义得到OAP为直角,再由OAP-PAB即可求出BAC的度数【详解】PA,PB是O是切线,PA=PB.又P=46,PAB=PBA=.又PA是O是切线,AO为半径,OAAP.OAP=90.BAC=OAPPAB=9067=1.故答案为:1【点睛】此题考查了切线的性质,切线长定理,等腰三角形的性质,以及三角形的内角和定理,熟练掌握定理及性质是解本题的关键14、且.【解析】方程两边同乘以x-1,化为整数方程,求得x,再列不等式得出m的取值范围【详解】方程两边同乘以x-1,

16、得,m-1=x-1,解得x=m-2,分式方程的解为正数,x=m-20且x-10,即m-20且m-2-10,m2且m1,故答案为m2且m115、1【解析】先根据反比例函数比例系数k的几何意义得到,再根据相似三角形的面积比等于相似比的平方,得到用含k的代数式表示3个阴影部分的面积之和,然后根据三个阴影部分的面积之和为,列出方程,解方程即可求出k的值【详解】解:根据题意可知,轴,设图中阴影部分的面积从左向右依次为,则,解得:k=2故答案为1考点:反比例函数综合题16、1【解析】试题分析:=4,=4-1=1故答案为1考点:完全平方公式17、125【解析】解:过O作OMAB,ONAC,OPBC,垂足分别

17、为M,N,PA=70,B+C=180A=110O在ABC三边上截得的弦长相等,OM=ON=OP,O是B,C平分线的交点BOC=18012(B+C)=18012110=125. 故答案为:125【点睛】本题考查了圆心角、弧、弦的关系, 三角形内角和定理, 角平分线的性质,解题的关键是掌握它们的性质和定理.18、【解析】求出自变量x为1时的函数值即可得到二次函数的图象与y轴的交点坐标【详解】把代入得:,该二次函数的图象与y轴的交点坐标为,故答案为【点睛】本题考查了二次函数图象上点的坐标特征,在y轴上的点的横坐标为1三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19

18、、(1)证明见解析;(2)结论:成立理由见解析;(3)30,1+【解析】(1)只要证明AB=ED,ABED即可解决问题;(2)成立如图2中,过点M作MGDE交CE于G由四边形DMGE是平行四边形,推出ED=GM,且EDGM,由(1)可知AB=GM,ABGM,可知ABDE,AB=DE,即可推出四边形ABDE是平行四边形;(3)如图3中,取线段HC的中点I,连接MI,只要证明MI=AM,MIAC,即可解决问题;设DH=x,则AH= x,AD=2x,推出AM=4+2x,BH=4+2x,由四边形ABDE是平行四边形,推出DFAB,推出 ,可得,解方程即可;【详解】(1)证明:如图1中,DEAB,EDC

19、=ABM,CEAM,ECD=ADB,AM是ABC的中线,且D与M重合,BD=DC,ABDEDC,AB=ED,ABED,四边形ABDE是平行四边形(2)结论:成立理由如下:如图2中,过点M作MGDE交CE于GCEAM,四边形DMGE是平行四边形,ED=GM,且EDGM,由(1)可知AB=GM,ABGM,ABDE,AB=DE,四边形ABDE是平行四边形(3)如图3中,取线段HC的中点I,连接MI,BM=MC,MI是BHC的中位线,MIBH,MI=BH,BHAC,且BH=AMMI=AM,MIAC,CAM=30设DH=x,则AH=x,AD=2x,AM=4+2x,BH=4+2x,四边形ABDE是平行四边

20、形,DFAB,解得x=1+或1(舍弃),DH=1+【点睛】本题考查了四边形综合题、平行四边形的判定和性质、直角三角形30度角的判定、平行线分线成比例定理、三角形的中位线定理等知识,解题的关键能正确添加辅助线,构造特殊四边形解决问题20、(1)袋子中白球有2个;(2)见解析, .【解析】(1)首先设袋子中白球有x个,利用概率公式求即可得方程:,解此方程即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次都摸到相同颜色的小球的情况,再利用概率公式即可求得答案【详解】解:(1)设袋子中白球有x个,根据题意得:,解得:x2,经检验,x2是原分式方程的解,袋子中白球有2个;

21、(2)画树状图得:共有9种等可能的结果,两次都摸到相同颜色的小球的有5种情况,两次都摸到相同颜色的小球的概率为:【点睛】此题考查了列表法或树状图法求概率注意掌握方程思想的应用注意概率=所求情况数与总情况数之比21、(1)补图见解析;(2)27;(3)1800名【解析】(1)根据A类的人数是10,所占的百分比是25%即可求得总人数,然后根据百分比的意义求得B类的人数;(2)用360乘以对应的比例即可求解;(3)用总人数乘以对应的百分比即可求解【详解】(1)抽取的总人数是:1025%=40(人),在B类的人数是:4030%=12(人).;(2)扇形统计图扇形D的圆心角的度数是:360=27;(3)

22、能在1.5小时内完成家庭作业的人数是:2000(25%+30%+35%)=1800(人).考点:条形统计图、扇形统计图22、(1)90;(1)证明见解析;(3)1【解析】(1)根据圆周角定理即可得CDE的度数;(1)连接DO,根据直角三角形的性质和等腰三角形的性质易证ODF=ODC+FDC=OCD+DCF=90,即可判定DF是O的切线;(3)根据已知条件易证CDEADC,利用相似三角形的性质结合勾股定理表示出AD,DC的长,再利用圆周角定理得出tanABD的值即可【详解】解:(1)解:对角线AC为O的直径,ADC=90,EDC=90;(1)证明:连接DO,EDC=90,F是EC的中点,DF=F

23、C,FDC=FCD,OD=OC,OCD=ODC,OCF=90,ODF=ODC+FDC=OCD+DCF=90,DF是O的切线;(3)解:如图所示:可得ABD=ACD,E+DCE=90,DCA+DCE=90,DCA=E,又ADC=CDE=90,CDEADC,DC1=ADDEAC=1DE,设DE=x,则AC=1x,则AC1AD1=ADDE,期(1x)1AD1=ADx,整理得:AD1+ADx10x1=0,解得:AD=4x或4.5x(负数舍去),则DC=,故tanABD=tanACD=23、(1)1件;(2)第40天,利润最大7200元;(3)46天【解析】试题分析:(1)根据待定系数法解出一次函数解析

24、式,然后把x=10代入即可;(2)设利润为y元,则当1x50时,y=2x2+160x+4000;当50x90时,y=120x+12000,分别求出各段上的最大值,比较即可得到结论;(3)直接写出在该产品销售的过程中,共有46天销售利润不低于5400元试题解析:解:(1)n与x成一次函数,设n=kx+b,将x=1,m=198,x=3,m=194代入,得:, 解得:,所以n关于x的一次函数表达式为n=-2x+200;当x=10时,n=-210+200=1(2)设销售该产品每天利润为y元,y关于x的函数表达式为:当1x50时,y=-2x2+160x+4000=-2(x-40)2+7200,-20,当

25、x=40时,y有最大值,最大值是7200;当50x90时,y=-120x+12000,-1200,y随x增大而减小,即当x=50时,y的值最大,最大值是6000;综上所述:当x=40时,y的值最大,最大值是7200,即在90天内该产品第40天的销售利润最大,最大利润是7200元;(3)在该产品销售的过程中,共有46天销售利润不低于5400元24、1.8米【解析】设PA=PN=x,RtAPM中求得=1.6x, 在RtBPM中,解得x=3,MN=MP-NP=0.6x=1.8.【详解】在RtAPN中,NAP=45,PA=PN,在RtAPM中,,设PA=PN=x,MAP=58,=1.6x,在RtBPM

26、中,,MBP=31,AB=5, x=3,MN=MP-NP=0.6x=1.8(米),答:广告牌的宽MN的长为1.8米【点睛】熟练掌握三角函数的定义并能够灵活运用是解题的关键.25、见解析【解析】作CAB=,再作CAB的平分线,在角平分线上截取AD=h,可得点D,过点D作AD的垂线,从而得出ABC【详解】解:如图所示,ABC即为所求【点睛】考查作图-复杂作图,掌握做一个角等于已知角、作角平分线及过直线上一点作已知直线的垂线的基本作图和等腰三角形的性质是解题的关键26、 (1)见解析;(2)顶点为(,)【解析】(1)根据题意,由根的判别式b24ac0得到答案;(2)结合题意,根据对称轴x得到m2,即

27、可得到抛物线解析式为yx25x+6,再将抛物线解析式为yx25x+6变形为yx25x+6(x)2,即可得到答案.【详解】(1)证明:a1,b(2m+1),cm2+m,b24ac(2m+1)241(m2+m)10,抛物线与x轴有两个不相同的交点(2)解:yx2(2m+1)x+m2+m,对称轴x,对称轴为直线x,解得m2,抛物线解析式为yx25x+6,yx25x+6(x)2,顶点为(, )【点睛】本题考查根的判别式、对称轴和顶点,解题的关键是掌握根的判别式、对称轴和顶点的计算和使用.27、证明见解析【解析】(1)一方面RtABC中,由BAC=30可以得到AB=2BC,另一方面ABE是等边三角形,E

28、FAB,由此得到AE=2AF,并且AB=2AF,从而可证明AFEBCA,再根据全等三角形的性质即可证明AC=EF(2)根据(1)知道EF=AC,而ACD是等边三角形,所以EF=AC=AD,并且ADAB,而EFAB,由此得到EFAD,再根据平行四边形的判定定理即可证明四边形ADFE是平行四边形【详解】证明:(1)RtABC中,BAC=30,AB=2BC又ABE是等边三角形,EFAB,AB=2AFAF=BC在RtAFE和RtBCA中,AF=BC,AE=BA,AFEBCA(HL)AC=EF(2)ACD是等边三角形,DAC=60,AC=ADDAB=DAC+BAC=90EFADAC=EF,AC=AD,EF=AD四边形ADFE是平行四边形考点:1全等三角形的判定与性质;2等边三角形的性质;3平行四边形的判定

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁