《天津市河北区2022-2023学年中考数学对点突破模拟试卷含解析.doc》由会员分享,可在线阅读,更多相关《天津市河北区2022-2023学年中考数学对点突破模拟试卷含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,、是的切线,点在上运动,且不与,重合,是直径,当时,的度数是()ABCD2益阳市高新区某厂今年新招聘一批员工,他们中不同文化程度的人数见下表:文化程度高中大专本科硕士博士人数9172095关于这组文化程度的人数数据,以下说法正
2、确的是:( )A众数是20B中位数是17C平均数是12D方差是263在ABC中,C90,AC9,sinB,则AB( )A15B12C9D64在平面直角坐标系中,二次函数y=a(xh)2+k(a0)的图象可能是ABCD5若一个三角形的两边长分别为5和7,则该三角形的周长可能是()A12B14C15D256甲乙两同学均从同一本书的第一页开始,按照顺序逐页依次在每页上写一个数,甲同学在第1页写1,第2页写3,第3页写1,每一页写的数均比前一页写的数多2;乙同学在第1页写1,第2页写6,第3页写11,每一页写的数均比前一页写的数多1若甲同学在某一页写的数为49,则乙同学在这一页写的数为()A116B1
3、20C121D1267如图所示,在长方形纸片ABCD中,AB=32cm,把长方形纸片沿AC折叠,点B落在点E处,AE交DC于点F,AF=25cm,则AD的长为()A16cmB20cmC24cmD28cm8下列运算正确的是()ABCa2a3=a5D(2a)3=2a39下列各曲线中表示y是x的函数的是()ABCD10两个有理数的和为零,则这两个数一定是()A都是零B至少有一个是零C一个是正数,一个是负数D互为相反数二、填空题(共7小题,每小题3分,满分21分)11在函数y=的表达式中,自变量x的取值范围是 12在矩形ABCD中,AB=6CM,E为直线CD上一点,连接AC,BE,若AC与BE交与点F
4、, DE=2,则EF:BE= _ 。13因式分解:x2y-4y3=_.14某商场对今年端午节这天销售A、B、C三种品牌粽子的情况进行了统计,绘制了如图1和图2所示的统计图,则B品牌粽子在图2中所对应的扇形的心角的度数是_15轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3h,若静水时船速为26km/h,水速为2km/h,则A港和B港相距_km16在ABC中,AB=AC,把ABC折叠,使点B与点A重合,折痕交AB于点M,交BC于点N如果CAN是等腰三角形,则B的度数为_17如图,四边形ABCD中,ABCD,ADC=90,P从A点出发,以每秒1个单位长度的速度,按ABCD的顺序在边上匀速运动,
5、设P点的运动时间为t秒,PAD的面积为S,S关于t的函数图象如图所示,当P运动到BC中点时,PAD的面积为_三、解答题(共7小题,满分69分)18(10分)如图,在一笔直的海岸线l上有A、B两个码头,A在B的正东方向,一艘小船从A码头沿它的北偏西60的方向行驶了20海里到达点P处,此时从B码头测得小船在它的北偏东45的方向求此时小船到B码头的距离(即BP的长)和A、B两个码头间的距离(结果都保留根号)19(5分)如图,点G是正方形ABCD对角线CA的延长线一点,对角线BD与AC交于点O,以线段AG为边作一个正方形AEFG,连接EB、GD(1)求证:EB=GD;(2)若AB=5,AG=2,求EB
6、的长20(8分)某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件降价前商场每月销售该商品的利润是多少元?要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?21(10分)列方程解应用题:某地2016年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2018年在2016年的基础上增加投入资金1600万元.从2016年到2018年,该地投入异地安置资金的年平均增长率为多少?22(10分)
7、如图,在矩形ABCD中,对角线AC的垂直平分线EF分别交AD、AC、BC于点E、O、F,连接CE和AF. (1)求证:四边形AECF为菱形;(2)若AB4,BC8,求菱形AECF的周长.23(12分)如图,已知三角形ABC的边AB是0的切线,切点为BAC经过圆心0并与圆相交于点D,C,过C作直线CE丄AB,交AB的延长线于点E,(1)求证:CB平分ACE;(2)若BE=3,CE=4,求O的半径.24(14分)先化简,再求值:( +),其中x=参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】连接OB,由切线的性质可得,由邻补角相等和四边形的内角和可得,再由圆周角
8、定理求得,然后由平行线的性质即可求得【详解】解,连结OB,、是的切线,则,四边形APBO的内角和为360,即,又,故选:B【点睛】本题主要考查了切线的性质、圆周角定理、平行线的性质和四边形的内角和,解题的关键是灵活运用有关定理和性质来分析解答2、C【解析】根据众数、中位数、平均数以及方差的概念求解【详解】A、这组数据中9出现的次数最多,众数为9,故本选项错误;B、因为共有5组,所以第3组的人数为中位数,即9是中位数,故本选项错误;C、平均数=12,故本选项正确;D、方差= (9-12)2+(17-12)2+(20-12)2+(9-12)2+(5-12)2= ,故本选项错误.故选C【点睛】本题考
9、查了中位数、平均数、众数的知识,解答本题的关键是掌握各知识点的概念3、A【解析】根据三角函数的定义直接求解.【详解】在RtABC中,C90,AC9,解得AB1故选A4、B【解析】根据题目给出的二次函数的表达式,可知二次函数的开口向下,即可得出答案.【详解】二次函数y=a(xh)2+k(a0)二次函数开口向下.即B成立.故答案选:B.【点睛】本题考查的是简单运用二次函数性质,解题的关键是熟练掌握二次函数性质.5、C【解析】先根据三角形三条边的关系求出第三条边的取值范围,进而求出周长的取值范围,从而可的求出符合题意的选项.【详解】三角形的两边长分别为5和7,2第三条边12,5+7+2三角形的周长5
10、+7+12,即14三角形的周长24,故选C.【点睛】本题考查了三角形三条边的关系:三角形任意两边之和大于第三边,任意两边之差小于第三边,据此解答即可.6、C【解析】根据题意确定出甲乙两同学所写的数字,设甲所写的第n个数为49,根据规律确定出n的值,即可确定出乙在该页写的数【详解】甲所写的数为 1,3,1,7,49,;乙所写的数为 1,6,11,16,设甲所写的第n个数为49,根据题意得:491+(n1)2,整理得:2(n1)48,即n124,解得:n21,则乙所写的第21个数为1+(211)11+241121,故选:C【点睛】考查了有理数的混合运算,弄清题中的规律是解本题的关键7、C【解析】首
11、先根据平行线的性质以及折叠的性质证明EAC=DCA,根据等角对等边证明FC=AF,则DF即可求得,然后在直角ADF中利用勾股定理求解【详解】长方形ABCD中,ABCD,BAC=DCA,又BAC=EAC,EAC=DCA,FC=AF=25cm,又长方形ABCD中,DC=AB=32cm,DF=DC-FC=32-25=7cm,在直角ADF中,AD=24(cm)故选C【点睛】本题考查了折叠的性质以及勾股定理,在折叠的过程中注意到相等的角以及相等的线段是关键8、C【解析】根据算术平方根的定义、二次根式的加减运算、同底数幂的乘法及积的乘方的运算法则逐一计算即可判断【详解】解:A、=2,此选项错误;B、不能进
12、一步计算,此选项错误;C、a2a3=a5,此选项正确;D、(2a)3=8a3,此选项计算错误;故选:C【点睛】本题主要考查二次根式的加减和幂的运算,解题的关键是掌握算术平方根的定义、二次根式的加减运算、同底数幂的乘法及积的乘方的运算法则9、D【解析】根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确故选D10、D【解析】解:互为相反数的两个有理数的和为零,故选DA、C不全面B、不正确二、填空题(共7小题,每小题3分,满分21分)11、x1【解析】根据被开方数大于等于0列式计算即可得解【详解】根据题意得,x10,解得x1故答案为x1【点睛】本题考查函数自变量的取值范围,
13、知识点为:二次根式的被开方数是非负数12、4:7或2:5【解析】根据E在CD上和CD的延长线上,运用相似三角形分类讨论即可.【详解】解:当E在线段CD上如图:矩形ABCDABCDABFCFE 设,即EF=2k,BF=3kBE=BF+EF=5kEF:BE=2k5k=25当当E在线段CD的延长线上如图:矩形ABCDABCDABFCFE 设,即EF=4k,BF=3kBE=BF+EF=7kEF:BE=4k7k=47故答案为:4:7或2:5.【点睛】本题以矩形为载体,考查了相似三角形的性质,解题的关键在于根据图形分类讨论,即数形结合的灵活应用.13、y(x+2y)(x-2y)【解析】首先提公因式,再利用
14、平方差进行分解即可【详解】原式故答案是:y(x+2y)(x-2y)【点睛】考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解14、120【解析】根据图1中C品牌粽子1200个,在图2中占50%,求出三种品牌粽子的总个数,再求出B品牌粽子的个数,从而计算出B品牌粽子占粽子总数的比例,从而求出B品牌粽子在图2中所对应的圆心角的度数【详解】解:三种品牌的粽子总数为120050%=2400个,又A、C品牌的粽子分别有400个、1200个,B品牌的粽子有2400-400-1200=800个,则B品牌粽子在图2中
15、所对应的圆心角的度数为360故答案为120【点睛】本题考查的是条形统计图和扇形统计图的综合运用读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小15、1【解析】根据逆流速度=静水速度-水流速度,顺流速度=静水速度+水流速度,表示出逆流速度与顺流速度,根据题意列出方程,求出方程的解问题可解【详解】解:设A港与B港相距xkm,根据题意得: ,解得:x=1,则A港与B港相距1km故答案为:1【点睛】此题考查了分式方程的应用题,解答关键是在顺流、逆流过程中找出等量关系构造方程16、或【解析】MN是AB的中垂线,则A
16、BN是等腰三角形,且NA=NB,即可得到B=BAN=C然后对ANC中的边进行讨论,然后在ABC中,利用三角形内角和定理即可求得B的度数解:把ABC折叠,使点B与点A重合,折痕交AB于点M,交BC于点N,MN是AB的中垂线NB=NAB=BAN,AB=ACB=C设B=x,则C=BAN=x1)当AN=NC时,CAN=C=x则在ABC中,根据三角形内角和定理可得:4x=180,解得:x=45则B=45;2)当AN=AC时,ANC=C=x,而ANC=B+BAN,故此时不成立;3)当CA=CN时,NAC=ANC=在ABC中,根据三角形内角和定理得到:x+x+x+=180,解得:x=36故B的度数为 45或
17、3617、1【解析】解:由图象可知,AB+BC=6,AB+BC+CD=10,CD=4,根据题意可知,当P点运动到C点时,PAD的面积最大,SPAD=ADDC=8,AD=4,又SABD=ABAD=2,AB=1,当P点运动到BC中点时,PAD的面积=(AB+CD)AD=1,故答案为1三、解答题(共7小题,满分69分)18、小船到B码头的距离是10海里,A、B两个码头间的距离是(10+10)海里【解析】试题分析:过P作PMAB于M,求出PBM=45,PAM=30,求出PM,即可求出BM、AM、BP试题解析:如图:过P作PMAB于M,则PMB=PMA=90,PBM=9045=45,PAM=9060=3
18、0,AP=20,PM=AP=10,AM=PM=,BPM=PBM=45,PM=BM=10,AB=AM+MB=,BP=,即小船到B码头的距离是海里,A、B两个码头间的距离是()海里考点:解直角三角形的应用-方向角问题19、(1)证明见解析;(2) ;【解析】(1)根据正方形的性质得到GAD=EAB,证明GADEAB,根据全等三角形的性质证明;(2)根据正方形的性质得到BDAC,AC=BD=5,根据勾股定理计算即可【详解】(1)在GAD和EAB中,GAD=90+EAD,EAB=90+EAD,GAD=EAB,在GAD和EAB中,GADEAB,EB=GD; (2)四边形ABCD是正方形,AB=5,BDA
19、C,AC=BD=5,DOG=90,OA=OD=BD=,AG=2 ,OG=OA+AG=,由勾股定理得,GD=,EB=【点睛】本题考查的是正方形的性质、全等三角形的判定和性质,掌握正方形的对角线相等、垂直且互相平分是解题的关键20、 (1) 4800元;(2) 降价60元.【解析】试题分析:(1)先求出降价前每件商品的利润,乘以每月销售的数量就可以得出每月的总利润;(2)设每件商品应降价x元,由销售问题的数量关系“每件商品的利润商品的销售数量=总利润”列出方程,解方程即可解决问题试题解析:(1)由题意得60(360280)4800(元).即降价前商场每月销售该商品的利润是4800元;(2)设每件商
20、品应降价x元,由题意得(360x280)(5x60)7200,解得x18,x260.要更有利于减少库存,则x60.即要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价60元.点睛:本题考查了列一元二次方程解实际问题的销售问题,解答时根据销售问题的数量关系建立方程是关键21、从2015年到2017年,该地投入异地安置资金的年平均增长率为50%.【解析】设年平均增长率为x,根据:2016年投入资金(1+增长率)2=2018年投入资金,列出方程求解可得.【详解】解:设该地投入异地安置资金的年平均增长率为x.根据题意得:1280(1+x)2=1280+1600.解得x1
21、=0.5=50%,x2=-2.5(舍去),答:从2016年到2018年,该地投入异地安置资金的年平均增长率为50%.【点睛】本题考查了一元二次方程的应用,由题意准确找出相等关系并据此列出方程是解题的关键22、(1)见解析;(2)1【解析】(1)根据ASA推出:AEOCFO;根据全等得出OE=OF,推出四边形是平行四边形,再根据EFAC即可推出四边形是菱形;(2)根据线段垂直平分线性质得出AF=CF,设AF=x,推出AF=CF=x,BF=8x在RtABF中,由勾股定理求出x的值,即可得到结论【详解】(1)EF是AC的垂直平分线,AO=OC,AOE=COF=90四边形ABCD是矩形,ADBC,EA
22、O=FCO在AEO和CFO中,AEOCFO(ASA);OE=OF又OA=OC,四边形AECF是平行四边形又EFAC,平行四边形AECF是菱形;(2)设AF=xEF是AC的垂直平分线,AF=CF=x,BF=8x在RtABF中,由勾股定理得:AB2+BF2=AF2,42+(8x)2=x2,解得:x=5,AF=5,菱形AECF的周长为1【点睛】本题考查了勾股定理,矩形性质,平行四边形的判定,菱形的判定,全等三角形的性质和判定,平行线的性质等知识点的综合运用,用了方程思想23、(1)证明见解析;(2). 【解析】试题分析:(1)证明:如图1,连接OB,由AB是0的切线,得到OBAB,由于CE丄AB,的
23、OBCE,于是得到1=3,根据等腰三角形的性质得到1=2,通过等量代换得到结果(2)如图2,连接BD通过DBCCBE,得到比例式,列方程可得结果(1)证明:如图1,连接OB,AB是0的切线,OBAB,CE丄AB,OBCE,1=3,OB=OC,1=2,2=3,CB平分ACE;(2)如图2,连接BD,CE丄AB,E=90,BC=5,CD是O的直径,DBC=90,E=DBC,DBCCBE,BC2=CDCE,CD=,OC=,O的半径=考点:切线的性质24、-【解析】先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可【详解】原式= +=-+=,当x=时,原式=-【点睛】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键