《四川省外国语学校2023年高考数学考前最后一卷预测卷含解析.doc》由会员分享,可在线阅读,更多相关《四川省外国语学校2023年高考数学考前最后一卷预测卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
2、1将一张边长为的纸片按如图(1)所示阴影部分裁去四个全等的等腰三角形,将余下部分沿虚线折叠并拼成一个有底的正四棱锥模型,如图(2)放置,如果正四棱锥的主视图是正三角形,如图(3)所示,则正四棱锥的体积是( )ABCD2已知为圆:上任意一点,若线段的垂直平分线交直线于点,则点的轨迹方程为( )ABC()D()3将函数的图象向左平移个单位长度,得到的函数为偶函数,则的值为()ABCD4已知函数满足,且,则不等式的解集为( )ABCD5阅读下侧程序框图,为使输出的数据为,则处应填的数字为ABCD6已知函数,要得到函数的图象,只需将的图象( )A向左平移个单位长度B向右平移个单位长度C向左平移个单位长
3、度D向右平移个单位长度7()ABCD8若的展开式中含有常数项,且的最小值为,则( )ABCD9已知集合A,B=,则AB=ABCD10设,则“ ”是“”的( )A充分而不必要条件B必要而不充分条件C充分必要条件D既不充分也不必要条件11设i是虚数单位,若复数()是纯虚数,则m的值为( )ABC1D312设函数在定义城内可导,的图象如图所示,则导函数的图象可能为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知为偶函数,当时,则曲线在点处的切线方程是_.14某班有学生52人,现将所有学生随机编号,用系统抽样方法,抽取一个容量为4的样本,已知5号、31号、44号学生在样本中,则样
4、本中还有一个学生的编号是_15已知的展开式中含有的项的系数是,则展开式中各项系数和为_.16在中,则绕所在直线旋转一周所形成的几何体的表面积为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知,.(1)解不等式;(2)若方程有三个解,求实数的取值范围.18(12分)2019年9月26日,携程网发布2019国庆假期旅游出行趋势预测报告,2018年国庆假日期间,西安共接待游客1692.56万人次,今年国庆有望超过2000万人次,成为西部省份中接待游客量最多的城市.旅游公司规定:若公司某位导游接待旅客,旅游年总收人不低于40(单位:万元),则称该导游为优秀导游.经验
5、表明,如果公司的优秀导游率越高,则该公司的影响度越高.已知甲、乙家旅游公司各有导游40名,统计他们一年内旅游总收入,分别得到甲公司的频率分布直方图和乙公司的频数分布表如下:分组频数(1)求的值,并比较甲、乙两家旅游公司,哪家的影响度高?(2)从甲、乙两家公司旅游总收人在(单位:万元)的导游中,随机抽取3人进行业务培训,设来自甲公司的人数为,求的分布列及数学期望.19(12分)已知,动点满足直线与直线的斜率之积为,设点的轨迹为曲线.(1)求曲线的方程;(2)若过点的直线与曲线交于,两点,过点且与直线垂直的直线与相交于点,求的最小值及此时直线的方程.20(12分)已知函数当时,求不等式的解集;,求
6、a的取值范围21(12分)设为实数,已知函数,(1)当时,求函数的单调区间:(2)设为实数,若不等式对任意的及任意的恒成立,求的取值范围;(3)若函数(,)有两个相异的零点,求的取值范围22(10分)分别为的内角的对边.已知.(1)若,求;(2)已知,当的面积取得最大值时,求的周长.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】设折成的四棱锥的底面边长为,高为,则,故由题设可得,所以四棱锥的体积,应选答案B2、B【解析】如图所示:连接,根据垂直平分线知,故轨迹为双曲线,计算得到答案.【详解】如图所示:连接,根据垂直平
7、分线知,故,故轨迹为双曲线,故,故轨迹方程为.故选:.【点睛】本题考查了轨迹方程,确定轨迹方程为双曲线是解题的关键.3、D【解析】利用三角函数的图象变换求得函数的解析式,再根据三角函数的性质,即可求解,得到答案【详解】将将函数的图象向左平移个单位长度,可得函数又由函数为偶函数,所以,解得,因为,当时,故选D【点睛】本题主要考查了三角函数的图象变换,以及三角函数的性质的应用,其中解答中熟记三角函数的图象变换,合理应用三角函数的图象与性质是解答的关键,着重考查了推理与运算能力,属于基础题4、B【解析】构造函数,利用导数研究函数的单调性,即可得到结论.【详解】设,则函数的导数,,即函数为减函数,,则
8、不等式等价为,则不等式的解集为,即的解为,由得或,解得或,故不等式的解集为.故选:.【点睛】本题主要考查利用导数研究函数单调性,根据函数的单调性解不等式,考查学生分析问题解决问题的能力,是难题.5、B【解析】考点:程序框图分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环求S的值,我们用表格列出程序运行过程中各变量的值的变化情况,不难给出答案解:程序在运行过程中各变量的值如下表示: S i 是否继续循环循环前 1 1/第一圈3 2 是第二圈7 3 是第三圈15 4 是第四圈31 5 否故最后当i5时退出,故选B6、A【解析】根据函数图像平移原则,即可容易
9、求得结果.【详解】因为,故要得到,只需将向左平移个单位长度.故选:A.【点睛】本题考查函数图像平移前后解析式的变化,属基础题.7、B【解析】利用复数代数形式的乘除运算化简得答案【详解】故选B【点睛】本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题8、C【解析】展开式的通项为,因为展开式中含有常数项,所以,即为整数,故n的最小值为1所以.故选C点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第项,再由特定项的特点求出值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第项,由特定项得出值,最后求出其参数.9、A【解析
10、】先解A、B集合,再取交集。【详解】,所以B集合与A集合的交集为,故选A【点睛】一般地,把不等式组放在数轴中得出解集。10、C【解析】根据充分条件和必要条件的定义结合对数的运算进行判断即可【详解】a,b(1,+),ablogab1,logab1ab,ab是logab1的充分必要条件,故选C【点睛】本题主要考查充分条件和必要条件的判断,根据不等式的解法是解决本题的关键11、A【解析】根据复数除法运算化简,结合纯虚数定义即可求得m的值.【详解】由复数的除法运算化简可得,因为是纯虚数,所以,故选:A.【点睛】本题考查了复数的概念和除法运算,属于基础题.12、D【解析】根据的图象可得的单调性,从而得到
11、在相应范围上的符号和极值点,据此可判断的图象.【详解】由的图象可知,在上为增函数,且在上存在正数,使得在上为增函数,在为减函数,故在有两个不同的零点,且在这两个零点的附近,有变化,故排除A,B.由在上为增函数可得在上恒成立,故排除C.故选:D.【点睛】本题考查导函数图象的识别,此类问题应根据原函数的单调性来考虑导函数的符号与零点情况,本题属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】试题分析:当时,则又因为为偶函数,所以,所以,则,所以切线方程为,即【考点】函数的奇偶性、解析式及导数的几何意义【知识拓展】本题题型可归纳为“已知当时,函数,则当时,求函数的解析式”有如
12、下结论:若函数为偶函数,则当时,函数的解析式为;若为奇函数,则函数的解析式为14、18【解析】根据系统抽样的定义和方法,所抽取的4个个体的编号成等差数列,故可根据其中三个个体的编号求出另一个个体的编号.【详解】解:根据系统抽样的定义和方法,所抽取的4个个体的编号成等差数列,已知其中三个个体的编号为5,31,44,故还有一个抽取的个体的编号为18,故答案为:18【点睛】本题主要考查系统抽样的定义和方法,属于简单题.15、1【解析】由二项式定理及展开式通项公式得:,解得,令得:展开式中各项系数和,得解【详解】解:由的展开式的通项,令,得含有的项的系数是,解得,令得:展开式中各项系数和为,故答案为:
13、1【点睛】本题考查了二项式定理及展开式通项公式,属于中档题16、【解析】由题知该旋转体为两个倒立的圆锥底对底组合在一起,根据圆锥侧面积计算公式可得.【详解】解:由题知该旋转体为两个倒立的圆锥底对底组合在一起,在中,如下图所示,底面圆的半径为,则所形成的几何体的表面积为.故答案为:.【点睛】本题考查旋转体的表面积计算问题,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)对分三种情况讨论,分别去掉绝对值符号,然后求解不等式组,再求并集即可得结果; (2).作出函数的图象, 当直线与函数的图象有三个公共点时,方程有三个解,由图可得结果.【
14、详解】(1)不等式,即为.当时,即化为,得,此时不等式的解集为,当时,即化为,解得,此时不等式的解集为.综上,不等式的解集为.(2)即.作出函数的图象如图所示,当直线与函数的图象有三个公共点时,方程有三个解,所以.所以实数的取值范围是.【点睛】绝对值不等式的解法:法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想;法二:利用“零点分段法”求解,体现了分类讨论的思想;法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想18、(1),乙公司影响度高;(2)见解析,【解析】(1)利用各小矩形的面积和等于1可得a,由导游人数为40人可得b,再由总收人不低于40可计算出优秀率;(2)易
15、得总收入在中甲公司有4人,乙公司有2人,则甲公司的人数的值可能为1,2,3,再计算出相应取值的概率即可.【详解】(1)由直方图知,解得,由频数分布表中知:,解得.所以,甲公司的导游优秀率为:,乙公司的导游优秀率为:,由于,所以乙公司影响度高.(2)甲公司旅游总收入在中的有人,乙公司旅游总收入在中的有2人,故的可能取值为1,2,3,易知:,;.所以的分布列为:123P.【点睛】本题考查频率分布直方图、随机变量的分布列与期望,考查学生数据处理与数学运算的能力,是一道中档题.19、(1)(2)的最小值为1,此时直线:【解析】(1)用直接法求轨迹方程,即设动点为,把已知用坐标表示并整理即得注意取值范围
16、;(2)设:,将其与曲线的方程联立,消元并整理得,设,则可得,由求出,将直线方程与联立,得,求得,计算,设.显然,构造,由导数的知识求得其最小值,同时可得直线的方程.【详解】(1)设,则,即整理得(2)设:,将其与曲线的方程联立,得即设,则,将直线:与联立,得设.显然构造在上恒成立所以在上单调递增所以,当且仅当,即时取“=”即的最小值为1,此时直线:.(注:1.如果按函数的性质求最值可以不扣分;2.若直线方程按斜率是否存在讨论,则可以根据步骤相应给分.)【点睛】本题考查求轨迹方程,考查直线与椭圆相交中的最值直线与椭圆相交问题中常采用“设而不求”的思想方法,即设交点坐标为,设直线方程,直线方程与
17、椭圆方程联立并消元,然后用韦达定理得(或),把这个代入其他条件变形计算化简得出结论,本题属于难题,对学生的逻辑推理、运算求解能力有一定的要求20、(1); (2).【解析】(1)当时,当时,令,即,解得,当时,显然成立,所以,当时,令,即,解得,综上所述,不等式的解集为(2)因为,因为,有成立,所以只需,解得,所以a的取值范围为【点睛】绝对值不等式的解法:法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想;法二:利用“零点分段法”求解,体现了分类讨论的思想;法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想21、(1)函数单调减区间为;单调增区间为(2)(3)【解析】(1)
18、据导数和函数单调性的关系即可求出;(2)分离参数,可得对任意的及任意的恒成立,构造函数,利用导数求出函数的最值即可求出的范围;(3)先求导,再分类讨论,根据导数和函数单调性以及最值得关系即可求出的范围【详解】解:(1)当时,因为,当时,;当时,所以函数单调减区间为;单调增区间为(2)由,得,由于,所以对任意的及任意的恒成立,由于,所以,所以对任意的恒成立,设,则,所以函数在上单调递减,在上单调递增,所以,所以(3)由,得,其中若时,则,所以函数在上单调递增,所以函数至多有一个零点,不合题意;若时,令,得由第(2)小题,知:当时,所以,所以,所以当时,函数的值域为所以,存在,使得,即, 且当时,
19、所以函数在上单调递增,在上单调递减因为函数有两个零点,所以设,则,所以函数在单调递增,由于,所以当时,所以,式中的,又由式,得由第(1)小题可知,当时,函数在上单调递减,所以,即当时,()由于,所以得,又因为,且函数在上单调递减,函数的图象在上不间断,所以函数在上恰有一个零点;()由于,令,设,由于时,所以设,即由式,得,当时,且,同理可得函数在上也恰有一个零点综上,【点睛】本题考查含参数的导数的单调性,利用导数求不等式恒成立问题,以及考查函数零点问题,考查学生的计算能力,是综合性较强的题.22、(1)(2)【解析】(1)根据正弦定理,将,化角为边,即可求出,再利用正弦定理即可求出;(2)根据,选择,所以当的面积取得最大值时,最大,结合(1)中条件,即可求出最大时,对应的的值,再根据余弦定理求出边,进而得到的周长【详解】(1)由,得,即.因为,所以.由,得.(2)因为,所以,当且仅当时,等号成立.因为的面积.所以当时,的面积取得最大值,此时,则,所以的周长为.【点睛】本题主要考查利用正弦定理和余弦定理解三角形,涉及到基本不等式的应用,意在考查学生的转化能力和数学运算能力