四川省自贡市富顺县二中2023届高考仿真模拟数学试卷含解析.doc

上传人:lil****205 文档编号:87997991 上传时间:2023-04-19 格式:DOC 页数:16 大小:1.35MB
返回 下载 相关 举报
四川省自贡市富顺县二中2023届高考仿真模拟数学试卷含解析.doc_第1页
第1页 / 共16页
四川省自贡市富顺县二中2023届高考仿真模拟数学试卷含解析.doc_第2页
第2页 / 共16页
点击查看更多>>
资源描述

《四川省自贡市富顺县二中2023届高考仿真模拟数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《四川省自贡市富顺县二中2023届高考仿真模拟数学试卷含解析.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设函数,若在上有且仅有5个零点,则的取值范围为( )ABCD2小张家订了一份报纸,送报人可能在早上之间把报送到小张家,小张离开家去工作的时间在早上之间.用表示事件:“小张在离开家前能得到报纸”

2、,设送报人到达的时间为,小张离开家的时间为,看成平面中的点,则用几何概型的公式得到事件的概率等于( )ABCD3我国古代数学著作九章算术中有如下问题:“今有器中米,不知其数,前人取半,中人三分取一,后人四分取一,余米一斗五升(注:一斗为十升).问,米几何?”下图是解决该问题的程序框图,执行该程序框图,若输出的S=15(单位:升),则输入的k的值为( )A45B60C75D1004已知函数的图像向右平移个单位长度后,得到的图像关于轴对称,当取得最小值时,函数的解析式为( )ABCD5已知定义在上的奇函数满足,且当时,则( )A1B-1C2D-26高斯是德国著名的数学家,近代数学奠基者之一,享有“

3、数学王子”的称号,用其名字命名的“高斯函数”为:设,用表示不超过的最大整数,则称为高斯函数,例如:,已知函数(),则函数的值域为( )ABCD7双曲线的渐近线与圆(x3)2y2r2(r0)相切,则r等于()AB2C3D68已知a0,b0,a+b =1,若 =,则的最小值是( )A3B4C5D69 “”是“直线与互相平行”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件10是平面上的一定点,是平面上不共线的三点,动点满足 ,则动点的轨迹一定经过的( )A重心B垂心C外心D内心11我国古代数学巨著九章算术中,有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”这个

4、问题用今天的白话叙述为:有一位善于织布的女子,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这位女子每天分别织布多少?根据上述问题的已知条件,若该女子共织布尺,则这位女子织布的天数是( )A2B3C4D112已知双曲线的一条渐近线方程是,则双曲线的离心率为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13设函数,则满足的的取值范围为_.14已知向量,则_.15如图所示,在边长为4的正方形纸片中,与相交于.剪去,将剩余部分沿,折叠,使、重合,则以、为顶点的四面体的外接球的体积为_.16安排名男生和名女生参与完成项工作,每人参与一项,每项工作至少由名男生和名女生完成,则不同的

5、安排方式共有_种(用数字作答).三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)手工艺是一种生活态度和对传统的坚持,在我国有很多手工艺品制作村落,村民的手工技艺世代相传,有些村落制造出的手工艺品不仅全国闻名,还大量远销海外.近年来某手工艺品村制作的手工艺品在国外备受欢迎,该村村民成立了手工艺品外销合作社,为严把质量关,合作社对村民制作的每件手工艺品都请3位行家进行质量把关,质量把关程序如下:(i)若一件手工艺品3位行家都认为质量过关,则该手工艺品质量为A级;(ii)若仅有1位行家认为质量不过关,再由另外2位行家进行第二次质量把关,若第二次质量把关这2位行家都认为质量

6、过关,则该手工艺品质量为B级,若第二次质量把关这2位行家中有1位或2位认为质量不过关,则该手工艺品质量为C级;(iii)若有2位或3位行家认为质量不过关,则该手工艺品质量为D级.已知每一次质量把关中一件手工艺品被1位行家认为质量不过关的概率为,且各手工艺品质量是否过关相互独立.(1)求一件手工艺品质量为B级的概率;(2)若一件手工艺品质量为A,B,C级均可外销,且利润分别为900元,600元,300元,质量为D级不能外销,利润记为100元.求10件手工艺品中不能外销的手工艺品最有可能是多少件;记1件手工艺品的利润为X元,求X的分布列与期望.18(12分)已知圆:和抛物线:,为坐标原点(1)已知

7、直线和圆相切,与抛物线交于两点,且满足,求直线的方程;(2)过抛物线上一点作两直线和圆相切,且分别交抛物线于两点,若直线的斜率为,求点的坐标19(12分)是数列的前项和,且.(1)求数列的通项公式;(2)若,求数列中最小的项.20(12分)在ABC中,角A,B,C的对边分别为a,b,c,已知,()求的大小;()若,求面积的最大值21(12分)2018年9月,台风“山竹”在我国多个省市登陆,造成直接经济损失达52亿元.某青年志愿者组织调查了某地区的50个农户在该次台风中造成的直接经济损失,将收集的数据分成五组:,(单位:元),得到如图所示的频率分布直方图.(1)试根据频率分布直方图估计该地区每个

8、农户的平均损失(同一组中的数据用该组区间的中点值代表);(2)台风后该青年志愿者与当地政府向社会发出倡议,为该地区的农户捐款帮扶,现从这50户并且损失超过4000元的农户中随机抽取2户进行重点帮扶,设抽出损失超过8000元的农户数为,求的分布列和数学期望.22(10分)已知函数, (1)当x0时,f(x)h(x)恒成立,求a的取值范围;(2)当x0时,研究函数F(x)=h(x)g(x)的零点个数;(3)求证:(参考数据:ln1.10.0953)参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由求出范围,结合正弦函数的图

9、象零点特征,建立不等量关系,即可求解.【详解】当时,在上有且仅有5个零点,.故选:A.【点睛】本题考查正弦型函数的性质,整体代换是解题的关键,属于基础题.2、D【解析】这是几何概型,画出图形,利用面积比即可求解.【详解】解:事件发生,需满足,即事件应位于五边形内,作图如下:故选:D【点睛】考查几何概型,是基础题.3、B【解析】根据程序框图中程序的功能,可以列方程计算【详解】由题意,故选:B.【点睛】本题考查程序框图,读懂程序的功能是解题关键4、A【解析】先求出平移后的函数解析式,结合图像的对称性和得到A和.【详解】因为关于轴对称,所以,所以,的最小值是.,则,所以.【点睛】本题主要考查三角函数

10、的图像变换及性质.平移图像时需注意x的系数和平移量之间的关系.5、B【解析】根据f(x)是R上的奇函数,并且f(x+1)=f(1-x),便可推出f(x+4)=f(x),即f(x)的周期为4,而由x0,1时,f(x)=2x-m及f(x)是奇函数,即可得出f(0)=1-m=0,从而求得m=1,这样便可得出f(2019)=f(-1)=-f(1)=-1【详解】是定义在R上的奇函数,且;的周期为4;时,;由奇函数性质可得;时,;.故选:B.【点睛】本题考查利用函数的奇偶性和周期性求值,此类问题一般根据条件先推导出周期,利用函数的周期变换来求解,考查理解能力和计算能力,属于中等题.6、B【解析】利用换元法

11、化简解析式为二次函数的形式,根据二次函数的性质求得的取值范围,由此求得的值域.【详解】因为(),所以,令(),则(),函数的对称轴方程为,所以,所以,所以的值域为.故选:B【点睛】本小题考查函数的定义域与值域等基础知识,考查学生分析问题,解决问题的能力,运算求解能力,转化与化归思想,换元思想,分类讨论和应用意识.7、A【解析】由圆心到渐近线的距离等于半径列方程求解即可.【详解】双曲线的渐近线方程为yx,圆心坐标为(3,0)由题意知,圆心到渐近线的距离等于圆的半径r,即r.答案:A【点睛】本题考查了双曲线的渐近线方程及直线与圆的位置关系,属于基础题.8、C【解析】根据题意,将a、b代入,利用基本

12、不等式求出最小值即可.【详解】a0,b0,a+b=1,当且仅当时取“”号答案:C【点睛】本题考查基本不等式的应用,“1”的应用,利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是首先要判断参数是否为正;二定是其次要看和或积是否为定值(和定积最大,积定和最小);三相等是最后一定要验证等号能否成立,属于基础题.9、A【解析】利用两条直线互相平行的条件进行判定【详解】当时,直线方程为与,可得两直线平行;若直线与互相平行,则,解得,则“”是“直线与互相平行”的充分不必要条件,故选【点睛】本题主要考查了两直线平行的条件和性质,充分条件,必要条件的定义和判断方法,属于基础题1

13、0、B【解析】解出,计算并化简可得出结论【详解】(),即点P在BC边的高上,即点P的轨迹经过ABC的垂心故选B【点睛】本题考查了平面向量的数量积运算在几何中的应用,根据条件中的角计算是关键11、B【解析】将问题转化为等比数列问题,最终变为求解等比数列基本量的问题.【详解】根据实际问题可以转化为等比数列问题,在等比数列中,公比,前项和为,求的值因为,解得,解得故选B【点睛】本题考查等比数列的实际应用,难度较易.熟悉等比数列中基本量的计算,对于解决实际问题很有帮助.12、D【解析】双曲线的渐近线方程是,所以,即 , ,即 ,故选D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】当时

14、,函数单调递增,当时,函数为常数,故需满足,且,解得答案.【详解】,当时,函数单调递增,当时,函数为常数,需满足,且,解得.故答案为:.【点睛】本题考查了根据函数单调性解不等式,意在考查学生对于函数性质的灵活运用.14、2【解析】由得,算出,再代入算出即可.【详解】,解得:,则.故答案为:2【点睛】本题主要考查了向量的坐标运算,向量垂直的性质,向量的模的计算.15、【解析】将三棱锥置入正方体中,利用正方体体对角线为三棱锥外接球的直径即可得到答案.【详解】由已知,将三棱锥置入正方体中,如图所示,故正方体体对角线长为,所以外接球半径为,其体积为.故答案为:.【点睛】本题考查三棱锥外接球的体积问题,

15、一般在处理特殊几何体的外接球问题时,要考虑是否能将其置入正(长)方体中,是一道中档题.16、1296【解析】先从4个男生选2个一组,将4人分成三组,然后从4个女生选2个一组,将4人分成三组,然后全排列即可.【详解】由于每项工作至少由名男生和名女生完成,则先从4个男生选2个一组,将4人分成三组,所以男生的排法共有,同理女生的排法共有,故不同的安排共有种.故答案为:1296【点睛】本题主要考查了排列组合的应用,考查了学生应用数学解决实际问题的能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)可能是2件;详见解析【解析】(1)由一件手工艺品质量为B级的情形,并结

16、合相互独立事件的概率公式,列式计算即可;(2)先求得一件手工艺品质量为D级的概率为,设10件手工艺品中不能外销的手工艺品可能是件,可知,分别令、,可求出使得最大的整数,进而可求出10件手工艺品中不能外销的手工艺品的最有可能件数;分别求出一件手工艺品质量为A、B、C、D级的概率,进而可列出X的分布列,求出期望即可.【详解】(1)一件手工艺品质量为B级的概率为.(2)由题意可得一件手工艺品质量为D级的概率为,设10件手工艺品中不能外销的手工艺品可能是件,则,则,其中,.由得,整数不存在,由得,所以当时,即,由得,所以当时,所以当时,最大,即10件手工艺品中不能外销的手工艺品最有可能是2件.由题意可

17、知,一件手工艺品质量为A级的概率为,一件手工艺品质量为B级的概率为,一件手工艺品质量为C级的概率为,一件手工艺品质量为D级的概率为,所以X的分布列为:X900600300100P则期望为.【点睛】本题考查相互独立事件的概率计算,考查离散型随机变量的分布列及数学期望,考查学生的计算求解能力,属于中档题.18、(1);(2)或【解析】试题分析: 直线与圆相切只需圆心到直线的距离等于圆的半径,直线与曲线相交于两点,且满足,只需数量积为0,要联立方程组设而不求,利用坐标关系及根与系数关系解题,这是解析几何常用解题方法,第二步利用直线的斜率找出坐标满足的要求,再利用两直线与圆相切,求出点的坐标.试题解析

18、:(1)解:设,由和圆相切,得由消去,并整理得,由,得,即,或(舍)当时,故直线的方程为(2)设,则设,由直线和圆相切,得,即设,同理可得:故是方程的两根,故由得,故同理,则,即,解或当时,;当时,故或19、(1);(2).【解析】(1)由可得出,两式作差可求得数列的通项公式;(2)求得,利用数列的单调性的定义判断数列的单调性,由此可求得数列的最小项的值.【详解】(1)对任意的,由得,两式相减得,因此,数列的通项公式为;(2)由(1)得,则.当时,即,;当时,即,.所以,数列的最小项为.【点睛】本题考查利用与的关系求通项,同时也考查了利用数列的单调性求数列中的最小项,考查推理能力与计算能力,属

19、于中等题.20、(1)(2)【解析】分析:(1)利用正弦定理以及诱导公式与和角公式,结合特殊角的三角函数值,求得角C;(2)运用向量的平方就是向量模的平方,以及向量数量积的定义,结合基本不等式,求得的最大值,再由三角形的面积公式计算即可得到所求的值.详解:(1), ()取中点,则,在中,(注:也可将两边平方)即, ,所以,当且仅当时取等号 此时,其最大值为.点睛:该题考查的是有关三角形的问题,涉及到的知识点有正弦定理,诱导公式,和角公式,向量的平方即为向量模的平方,基本不等式,三角形的面积公式,在解题的过程中,需要正确使用相关的公式进行运算即可求得结果.21、(1)3360元;(2)见解析【解

20、析】(1)根据频率分布直方图计算每个农户的平均损失;(2)根据频率分布直方图计算随机变量X的可能取值,再求X的分布列和数学期望值【详解】(1)记每个农户的平均损失为元,则 ;(2)由频率分布直方图,可得损失超过1000元的农户共有(0.00009+0.00003+0.00003)20005015(户),损失超过8000元的农户共有0.000032000503(户),随机抽取2户,则X的可能取值为0,1,2;计算P(X0),P(X1),P(X2),所以X的分布列为; X012P数学期望为E(X)0+1+2【点睛】本题考查了频率分布直方图与离散型随机变量的分布列与数学期望计算问题,属于中档题22、

21、(1);(2)见解析;(3)见解析【解析】(1)令H(x)=h(x)f(x)=ex1aln(x+1)(x0),求得导数,讨论a1和a1,判断导数的符号,由恒成立思想可得a的范围;(2)求得F(x)=h(x)g(x)的导数和二阶导数,判断F(x)的单调性,讨论a1,a1,F(x)的单调性和零点个数;(3)由(1)知,当a=1时,ex1+ln(x+1)对x0恒成立,令;由(2)知,当a=1时,对x0恒成立,令,结合条件,即可得证【详解】()解:令H(x)=h(x)f(x)=ex1aln(x+1)(x0),则,若a1,则,H(x)0,H(x)在0,+)递增,H(x)H(0)=0,即f(x)h(x)在

22、0,+)恒成立,满足,所以a1; 若a1,H(x)=ex在0,+)递增,H(x)H(0)=1a,且1a0,且x+时,H(x)+,则x0(0,+),使H(x0)=0进而H(x)在0,x0)递减,在(x0,+)递增,所以当x(0,x0)时H(x)H(0)=0,即当x(0,x0)时,f(x)h(x),不满足题意,舍去;综合,知a的取值范围为(,1()解:依题意得,则F(x)=exx2+a,则F(x)=ex2x0在(,0)上恒成立,故F(x)=exx2+a在(,0)递增,所以F(x)F(0)=1+a,且x时,F(x);若1+a0,即a1,则F(x)F(0)=1+a0,故F(x)在(,0)递减,所以F(

23、x)F(0)=0,F(x)在(,0)无零点; 若1+a0,即a1,则使,进而F(x)在递减,在递增,且x时,F(x)在上有一个零点,在无零点,故F(x)在(,0)有一个零点综合,当a1时无零点;当a1时有一个零点()证明:由()知,当a=1时,ex1+ln(x+1)对x0恒成立,令,则即; 由()知,当a=1时,对x0恒成立,令,则,所以;故有【点睛】本题考查导数的运用:求单调区间,考查函数零点存在定理的运用,考查分类讨论思想方法,以及运算能力和推理能力,属于难题对于函数的零点问题,它和方程的根的问题,和两个函数的交点问题是同一个问题,可以互相转化;在转化为两个函数交点时,如果是一个常函数一个含自变量的函数,注意让含有自变量的函数式子尽量简单一些

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁