《吉林省长春市外国语校2023年毕业升学考试模拟卷数学卷含解析.doc》由会员分享,可在线阅读,更多相关《吉林省长春市外国语校2023年毕业升学考试模拟卷数学卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1一元二次方程2x23x+1=0的根的情况是()A有两个相等的实数根B有两个不相等的实数根C只有一个实数根D没有实数根2九
2、章算术是中国古代数学的重要著作,方程术是它的最高成就,其中记载:今有牛五、羊二,直金十两;牛二、羊五,直金八两。问:牛、羊各直金几何?译文:“假设有 5 头牛、2 只羊,值金 10 两;2 头牛、5 只羊,值金 8 两。问:每头牛、每只羊各值金多少两?” 设每头牛值金 x 两,每只羊值金 y 两,则列方程组错误的是( )ABCD3某校在国学文化进校园活动中,随机统计50名学生一周的课外阅读时间如表所示,这组数据的众数和中位数分别是()学生数(人)5814194时间(小时)678910A14,9B9,9C9,8D8,94青藏高原是世界上海拔最高的高原,它的面积是 2500000 平方千米将 25
3、00000 用科学记数法表示应为( )ABCD5如图,数轴上的三点所表示的数分别为,其中,如果|那么该数轴的原点的位置应该在( )A点的左边B点与点之间C点与点之间D点的右边6如图,已知在ABC,ABAC若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是()AAEECBAEBECEBCBACDEBCABE7一个几何体由大小相同的小正方体搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在这个位置小正方体的个数从左面看到的这个几何体的形状图的是()ABCD8已知:如图是yax2+2x1的图象,那么ax2+2x10的根可能是下列哪幅图中抛物线与直线的交点横坐标
4、()ABCD92017年,小榄镇GDP总量约31600000000元,数据31600000000科学记数法表示为()A0.3161010B0.3161011C3.161010D3.16101110数轴上有A,B,C,D四个点,其中绝对值大于2的点是()A点AB点BC点CD点D11下列算式的运算结果正确的是()Am3m2=m6 Bm5m3=m2(m0)C(m2)3=m5 Dm4m2=m212某班要推选学生参加学校的“诗词达人”比赛,有7名学生报名参加班级选拔赛,他们的选拔赛成绩各不相同,现取其中前3名参加学校比赛小红要判断自己能否参加学校比赛,在知道自己成绩的情况下,还需要知道这7名学生成绩的(
5、 )A众数B中位数C平均数D方差二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,已知ABC,AB=6,AC=5,D是边AB的中点,E是边AC上一点,ADE=C,BAC的平分线分别交DE、BC于点F、G,那么的值为_14已知矩形ABCD,ADAB,以矩形ABCD的一边为边画等腰三角形,使得它的第三个顶点在矩形ABCD的其他边上,则可以画出的不同的等腰三角形的个数为_.15已知、为两个连续的整数,且,则=_16用换元法解方程时,如果设,那么原方程化成以为“元”的方程是_17如图,AB为圆O的直径,弦CDAB,垂足为点E,连接OC,若OC5,CD8,则AE_18矩形ABCD中,AB=
6、8,AD=6,E为BC边上一点,将ABE沿着AE翻折,点B落在点F处,当EFC为直角三角形时BE=_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,一条公路的两侧互相平行,某课外兴趣小组在公路一侧AE的点A处测得公路对面的点C与AE的夹角CAE=30,沿着AE方向前进15米到点B处测得CBE=45,求公路的宽度(结果精确到0.1米,参考数据:1.73)20(6分)黄石市在创建国家级文明卫生城市中,绿化档次不断提升某校计划购进A,B两种树木共100棵进行校园绿化升级,经市场调查:购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种
7、树木1棵,共需380元(1)求A种,B种树木每棵各多少元; (2)因布局需要,购买A种树木的数量不少于B种树木数量的3倍学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用21(6分)已知:如图,ABAC,点D是BC的中点,AB平分DAE,AEBE,垂足为E求证:ADAE22(8分)小李在学习了定理“直角三角形斜边上的中线等于斜边的一半”之后做了如下思考,请你帮他完成如下问题:他认为该定理有逆定理:“如果一个三角形某条边上的中线等于该边长的一半,那么这个三角形是直角三角形”应该成
8、立.即如图,在中,是边上的中线,若,求证:.如图,已知矩形,如果在矩形外存在一点,使得,求证:.(可以直接用第(1)问的结论)在第(2)问的条件下,如果恰好是等边三角形,请求出此时矩形的两条邻边与的数量关系.23(8分)已知:ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度)(1)画出ABC向下平移4个单位长度得到的A1B1C1,点C1的坐标是 ;(2)以点B为位似中心,在网格内画出A2B2C2,使A2B2C2与ABC位似,且位似比为2:1,点C2的坐标是 ;(3)A2B2C2的面积是 平方单位24(10分)已知
9、:ABC在坐标平面内,三个顶点的坐标分别为A(0,3),B(3,4),C(2,2).(正方形网格中, 每个小正方形的边长是1个单位长度)画出ABC向下平移4个单位得到的A1B1C1,并直接写出C1点的坐标;以点B为位似中心,在网格中画出A2BC2,使A2BC2与ABC位似,且位似比为21,并直接写出C2点的坐标及A2BC2的面积25(10分)已知一次函数yx+1与抛物线yx2+bx+c交A(m,9),B(0,1)两点,点C在抛物线上且横坐标为1(1)写出抛物线的函数表达式;(2)判断ABC的形状,并证明你的结论;(3)平面内是否存在点Q在直线AB、BC、AC距离相等,如果存在,请直接写出所有符
10、合条件的Q的坐标,如果不存在,说说你的理由26(12分)解不等式组:,并将它的解集在数轴上表示出来.27(12分)我市在党中央实施“精准扶贫”政策的号召下,大力开展科技扶贫工作,帮助农民组建农副产品销售公司,某农副产品的年产量不超过100万件,该产品的生产费用y(万元)与年产量x(万件)之间的函数图象是顶点为原点的抛物线的一部分(如图所示);该产品的销售单价z(元/件)与年销售量x(万件)之间的函数图象是如图所示的一条线段,生产出的产品都能在当年销售完,达到产销平衡,所获毛利润为W万元(毛利润=销售额生产费用)(1)请直接写出y与x以及z与x之间的函数关系式;(写出自变量x的取值范围)(2)求
11、W与x之间的函数关系式;(写出自变量x的取值范围);并求年产量多少万件时,所获毛利润最大?最大毛利润是多少?(3)由于受资金的影响,今年投入生产的费用不会超过360万元,今年最多可获得多少万元的毛利润?参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】试题分析:对于一元二次方程,当=时方程有两个不相等的实数根,当=时方程有两个相等的实数根,当=时方程没有实数根.根据题意可得:=,则方程有两个不相等的实数根.2、D【解析】由5头牛、2只羊,值金10两可得:5x+2y=10,由2头牛、5只羊,值金8两可得2x+5y=8,则
12、7头牛、7只羊,值金18两,据此可知7x+7y=18,据此可得答案【详解】解:设每头牛值金x两,每只羊值金y两,由5头牛、2只羊,值金10两可得:5x+2y=10,由2头牛、5只羊,值金8两可得2x+5y=8,则7头牛、7只羊,值金18两,据此可知7x+7y=18,所以方程组错误,故选:D【点睛】本题主要考查由实际问题抽象出二元一次方程组,解题的关键是理解题意找到相等关系及等式的基本性质3、C【解析】解:观察、分析表格中的数据可得:课外阅读时间为1小时的人数最多为11人,众数为1将这组数据按照从小到大的顺序排列,第25个和第26个数据的均为2,中位数为2故选C【点睛】本题考查(1)众数是一组数
13、据中出现次数最多的数;(2)中位数的确定要分两种情况:当数据组中数据的总个数为奇数时,把所有数据按从小到大的顺序排列,中间的那个数就是中位数;当数据组中数据的总个数为偶数时,把所有数据按从小到大的顺序排列,中间的两个数的平均数是这组数据的中位数.4、C【解析】分析:在实际生活中,许多比较大的数,我们习惯上都用科学记数法表示,使书写、计算简便解答:解:根据题意:2500000=2.51故选C5、C【解析】根据绝对值是数轴上表示数的点到原点的距离,分别判断出点A、B、C到原点的距离的大小,从而得到原点的位置,即可得解【详解】|a|c|b|,点A到原点的距离最大,点C其次,点B最小,又AB=BC,原
14、点O的位置是在点B、C之间且靠近点B的地方故选:C【点睛】此题考查了实数与数轴,理解绝对值的定义是解题的关键6、C【解析】解:AB=AC,ABC=ACB以点B为圆心,BC长为半径画弧,交腰AC于点E,BE=BC,ACB=BEC,BEC=ABC=ACB,BAC=EBC故选C点睛:本题考查了等腰三角形的性质,当等腰三角形的底角对应相等时其顶角也相等,难度不大7、B【解析】分析:由已知条件可知,从正面看有1列,每列小正方数形数目分别为4,1,2;从左面看有1列,每列小正方形数目分别为1,4,1据此可画出图形详解:由俯视图及其小正方体的分布情况知,该几何体的主视图为:该几何体的左视图为:故选:B点睛:
15、此题主要考查了几何体的三视图画法由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视图的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字8、C【解析】由原抛物线与x轴的交点位于y轴的两端,可排除A、D选项;B、方程ax2+2x1=0有两个不等实根,且负根的绝对值大于正根的绝对值,B不符合题意;C、抛物线y=ax2与直线y=2x+1的交点,即交点的横坐标为方程ax2+2x1=0的根,C符合题意此题得解【详解】抛物线y=ax2+2x1与x轴的交点位于y轴的两端,A、D选项不符合题意;B
16、、方程ax2+2x1=0有两个不等实根,且负根的绝对值大于正根的绝对值,B选项不符合题意;C、图中交点的横坐标为方程ax2+2x1=0的根(抛物线y=ax2与直线y=2x+1的交点),C选项符合题意故选:C【点睛】本题考查了抛物线与x轴的交点以及二次函数的图象与位置变化,逐一分析四个选项中的图形是解题的关键9、C【解析】科学记数法的表示形式为a10n的形式,其中1|a|1时,n是正数;当原数的绝对值1时,n是负数【详解】316000000003.161故选:C【点睛】本题考查科学记数法,解题的关键是掌握科学记数法的表示.10、A【解析】根据绝对值的含义和求法,判断出绝对值等于2的数是2和2,据
17、此判断出绝对值等于2的点是哪个点即可【详解】解:绝对值等于2的数是2和2,绝对值等于2的点是点A故选A【点睛】此题主要考查了绝对值的含义和求法,要熟练掌握,解答此题的关键要明确:互为相反数的两个数绝对值相等;绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数有理数的绝对值都是非负数11、B【解析】直接利用同底数幂的除法运算法则以及合并同类项法则、积的乘方运算法则分别化简得出答案【详解】A、m3m2=m5,故此选项错误;B、m5m3=m2(m0),故此选项正确;C、(m-2)3=m-6,故此选项错误;D、m4-m2,无法计算,故此选项错误;故选:B【点睛】此题主要考查了
18、同底数幂的除法运算以及合并同类项法则、积的乘方运算,正确掌握运算法则是解题关键12、B【解析】由于总共有7个人,且他们的成绩互不相同,第4的成绩是中位数,要判断自己能否参加学校比赛,只需知道中位数即可【详解】由于总共有7个人,且他们的成绩互不相同,第4的成绩是中位数,要判断自己能否参加学校比赛,故应知道中位数是多少故选B【点睛】本题考查了统计的有关知识,掌握平均数、中位数、众数、方差的意义是解题的关键二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】由题中所给条件证明ADFACG,可求出的值.【详解】解:在ADF和ACG中,AB=6,AC=5,D是边AB的中点AG是BAC的平
19、分线,DAF=CAGADECADFACG.故答案为.【点睛】本题考查了相似三角形的判定和性质,难度适中,需熟练掌握.14、8【解析】根据题意作出图形即可得出答案,【详解】如图,ADAB,CDE1,ABE2,ABE3,BCE4,CDE5,ABE6,ADE7,CDE8,为等腰三角形,故有8个满足题意得点.【点睛】此题主要考查矩形的对称性,解题的关键是根据题意作出图形.15、11【解析】根据无理数的性质,得出接近无理数的整数,即可得出a,b的值,即可得出答案【详解】ab,a、b为两个连续的整数,a5,b6,ab11.故答案为11.【点睛】本题考查的是估算无理数的大小,熟练掌握无理数是解题的关键.16
20、、y-【解析】分析:根据换元法,可得答案详解:=1时,如果设=y,那么原方程化成以y为“元”的方程是y=1故答案为y=1点睛:本题考查了换元法解分式方程,把换元为y是解题的关键17、2【解析】试题解析:AB为圆O的直径,弦CDAB,垂足为点E.在直角OCE中, 则AE=OAOE=53=2.故答案为2.18、3或1【解析】分当点F落在矩形内部时和当点F落在AD边上时两种情况求BE得长即可.【详解】当CEF为直角三角形时,有两种情况:当点F落在矩形内部时,如图1所示连结AC,在RtABC中,AB=1,BC=8,AC= =10,B沿AE折叠,使点B落在点F处,AFE=B=90,当CEF为直角三角形时
21、,只能得到EFC=90,点A、F、C共线,即B沿AE折叠,使点B落在对角线AC上的点F处,如图,EB=EF,AB=AF=1,CF=101=4,设BE=x,则EF=x,CE=8x,在RtCEF中,EF2+CF2=CE2,x2+42=(8x)2,解得x=3,BE=3;当点F落在AD边上时,如图2所示此时ABEF为正方形,BE=AB=1综上所述,BE的长为3或1故答案为3或1【点睛】本题考查了矩形的性质、图形的折叠变换、勾股定理的应用等知识点,解题时要注意分情况讨论三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、公路的宽为20.5米【解析】作CDAE,设CD=x
22、米,由CBD=45知BD=CD=x,根据tanCAD=,可得=,解之即可【详解】解:如图,过点C作CDAE于点D,设公路的宽CD=x米,CBD=45,BD=CD=x,在RtACD中,CAE=30,tanCAD=,即=,解得:x=20.5(米),答:公路的宽为20.5米【点睛】本题考查了直角三角形的应用,解答本题的关键是根据仰角构造直角三角形,利用三角函数解直角三角形20、 (1) A种树每棵2元,B种树每棵80元;(2) 当购买A种树木1棵,B种树木25棵时,所需费用最少,最少为8550元【解析】(1)设A种树每棵x元,B种树每棵y元,根据“购买A种树木2棵,B种树木5棵,共需600元;购买A
23、种树木3棵,B种树木1棵,共需380元”列出方程组并解答;(2)设购买A种树木为x棵,则购买B种树木为(2-x)棵,根据“购买A种树木的数量不少于B种树木数量的3倍”列出不等式并求得x的取值范围,结合实际付款总金额=0.9(A种树的金额+B种树的金额)进行解答【详解】解:(1)设A种树木每棵x元,B种树木每棵y元,根据题意,得 ,解得 ,答:A种树木每棵2元,B种树木每棵80元(2)设购买A种树木x棵,则B种树木(2x)棵,则x3(2x)解得x1又2x0,解得x21x2设实际付款总额是y元,则y0.92x80(2x)即y18x7 3180,y随x增大而增大,当x1时,y最小为1817 38 5
24、50(元)答:当购买A种树木1棵,B种树木25棵时,所需费用最少,为8 550元21、见解析【解析】试题分析:证明简单的线段相等,可证线段所在的三角形全等,结合本题,证ADBAEB即可试题解析:AB=AC,点D是BC的中点,ADBC,ADB=90.AEEB,E=ADB=90.AB平分DAE,BAD=BAE.在ADB和AEB中,E=ADB,BAD=BAE,AB=AB,ADBAEB(AAS),AD=AE.22、(1)详见解析;(2)详见解析;(3)【解析】(1)利用等腰三角形的性质和三角形内角和即可得出结论;(2)先判断出OE=AC,即可得出OE=BD,即可得出结论;(3)先判断出ABE是底角是3
25、0的等腰三角形,即可构造直角三角形即可得出结论【详解】(1)AD=BD,B=BAD,AD=CD,C=CAD,在ABC中,B+C+BAC=180,B+C+BAD+CAD=B+C+B+C=180B+C=90,BAC=90,(2)如图,连接与,交点为,连接四边形是矩形(3)如图3,过点做于点四边形是矩形,是等边三角形,由(2)知,在中,【点睛】此题是四边形综合题,主要考查了矩形是性质,直角三角形的性质和判定,含30角的直角三角形的性质,三角形的内角和公式,解(1)的关键是判断出B=BAD,解(2)的关键是判断出OE=AC,解(3)的关键是判断出ABE是底角为30的等腰三角形,进而构造直角三角形23、
26、(1)(2,2);(2)(1,0);(3)1【解析】试题分析:(1)根据平移的性质得出平移后的图从而得到点的坐标;(2)根据位似图形的性质得出对应点位置,从而得到点的坐标;(3)利用等腰直角三角形的性质得出A2B2C2的面积试题解析:(1)如图所示:C1(2,2);故答案为(2,2);(2)如图所示:C2(1,0);故答案为(1,0);(3)=20,=20,=40,A2B2C2是等腰直角三角形,A2B2C2的面积是:=1平方单位故答案为1考点:1、平移变换;2、位似变换;3、勾股定理的逆定理24、解:(1)如图,A1B1C1即为所求,C1(2,2)(2)如图,A2BC2即为所求,C2(1,0)
27、,A2BC2的面积:10【解析】分析:(1)根据网格结构,找出点A、B、C向下平移4个单位的对应点、 的位置,然后顺次连接即可,再根据平面直角坐标系写出点的坐标;(2)延长BA到使A=AB,延长BC到,使C=BC,然后连接A2C2即可,再根据平面直角坐标系写出点的坐标,利用B所在的矩形的面积减去四周三个小直角三角形的面积,列式计算即可得解本题解析:(1)如图,A1B1C1即为所求,C1(2,2)(2)如图,B为所求, (1,0),B 的面积:64262424=24644=2414=10,25、(1)yx27x+1;(2)ABC为直角三角形理由见解析;(3)符合条件的Q的坐标为(4,1),(24
28、,1),(0,7),(0,13)【解析】(1)先利用一次函数解析式得到A(8,9),然后利用待定系数法求抛物线解析式;(2)先利用抛物线解析式确定C(1,5),作AMy轴于M,CNy轴于N,如图,证明ABM和BNC都是等腰直角三角形得到MBA45,NBC45,AB8 ,BN1,从而得到ABC90,所以ABC为直角三角形;(3)利用勾股定理计算出AC10 ,根据直角三角形内切圆半径的计算公式得到RtABC的内切圆的半径2 ,设ABC的内心为I,过A作AI的垂线交直线BI于P,交y轴于Q,AI交y轴于G,如图,则AI、BI为角平分线,BIy轴,PQ为ABC的外角平分线,易得y轴为ABC的外角平分线
29、,根据角平分线的性质可判断点P、I、Q、G到直线AB、BC、AC距离相等,由于BI24,则I(4,1),接着利用待定系数法求出直线AI的解析式为y2x7,直线AP的解析式为yx+13,然后分别求出P、Q、G的坐标即可【详解】解:(1)把A(m,9)代入yx+1得m+19,解得m8,则A(8,9),把A(8,9),B(0,1)代入yx2+bx+c得,解得,抛物线解析式为yx27x+1;故答案为yx27x+1;(2)ABC为直角三角形理由如下:当x1时,yx27x+13142+15,则C(1,5),作AMy轴于M,CNy轴于N,如图,B(0,1),A(8,9),C(1,5),BMAM8,BNCN1
30、,ABM和BNC都是等腰直角三角形,MBA45,NBC45,AB8,BN1,ABC90,ABC为直角三角形;(3)AB8,BN1,AC10,RtABC的内切圆的半径,设ABC的内心为I,过A作AI的垂线交直线BI于P,交y轴于Q,AI交y轴于G,如图,I为ABC的内心,AI、BI为角平分线,BIy轴,而AIPQ,PQ为ABC的外角平分线,易得y轴为ABC的外角平分线,点I、P、Q、G为ABC的内角平分线或外角平分线的交点,它们到直线AB、BC、AC距离相等,BI24,而BIy轴,I(4,1),设直线AI的解析式为ykx+n,则,解得,直线AI的解析式为y2x7,当x0时,y2x77,则G(0,
31、7);设直线AP的解析式为yx+p,把A(8,9)代入得4+n9,解得n13,直线AP的解析式为yx+13,当y1时,x+131,则P(24,1)当x0时,yx+1313,则Q(0,13),综上所述,符合条件的Q的坐标为(4,1),(24,1),(0,7),(0,13)【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、角平分线的性质和三角形内心的性质;会利用待定系数法求函数解析式;理解坐标与图形性质是解题的关键26、-1x4,在数轴上表示见解析.【解析】试题分析: 分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可试题解析:,由得,x4;由得,x1.故不等式
32、组的解集为:1x4.在数轴上表示为:27、(1)y=x1z=x+30(0x100);(1)年产量为75万件时毛利润最大,最大毛利润为1115万元;(3)今年最多可获得毛利润1080万元【解析】(1)利用待定系数法可求出y与x以及z与x之间的函数关系式;(1)根据(1)的表达式及毛利润销售额生产费用,可得出w与x的函数关系式,再利用配方法求出最值即可;(3)首先求出x的取值范围,再利用二次函数增减性得出答案即可.【详解】(1)图可得函数经过点(100,1000),设抛物线的解析式为yax1(a0),将点(100,1000)代入得:100010000a,解得:a,故y与x之间的关系式为yx1图可得
33、:函数经过点(0,30)、(100,10),设zkxb,则,解得: ,故z与x之间的关系式为zx30(0x100);(1)Wzxyx130xx1x130x(x1150x)(x75)11115,0,当x75时,W有最大值1115,年产量为75万件时毛利润最大,最大毛利润为1115万元;(3)令y360,得x1360,解得:x60(负值舍去),由图象可知,当0y360时,0x60,由W(x75)11115的性质可知,当0x60时,W随x的增大而增大,故当x60时,W有最大值1080,答:今年最多可获得毛利润1080万元【点睛】本题主要考查二次函数的应用以及待定系数法求一次函数解析式,注意二次函数最值的求法,一般用配方法.