《哈尔滨市平房区重点达标名校2023年中考联考数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《哈尔滨市平房区重点达标名校2023年中考联考数学试卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,O的直径AB=2,C是弧AB的中点,AE,BE分别平分BAC和ABC,以E为圆心,AE为半径作扇形EAB,取3,则
2、阴影部分的面积为()A4B74C6D2如图1,在矩形ABCD中,动点E从A出发,沿ABBC方向运动,当点E到达点C时停止运动,过点E做FEAE,交CD于F点,设点E运动路程为x,FCy,如图2所表示的是y与x的函数关系的大致图象,当点E在BC上运动时,FC的最大长度是,则矩形ABCD的面积是()AB5C6D3函数y=中自变量x的取值范围是Ax0Bx4Cx4Dx44若点A(2,),B(-3,),C(-1,)三点在抛物线的图象上,则、的大小关系是()ABCD5通州区大运河森林公园占地面积10700亩,是北京规模最大的滨河森林公园,将10700用科学记数法表示为( )A10.7104B1.07105
3、C1.7104D1.071046一元二次方程的根的情况是( )A有一个实数根B有两个相等的实数根C有两个不相等的实数根D没有实数根7关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是( )Aq16Cq4Dq48在平面直角坐标系xOy中,四条抛物线如图所示,其解析式中的二次项系数一定小于1的是()Ay1By2Cy3Dy49某大型企业员工总数为28600人,数据“28600”用科学记数法可表示为()A0.286105 B2.86105 C28.6103 D2.8610410|3|()ABC3D311如图,已知点A、B、C、D在O上,圆心O在D内部,四边形ABCO为平行四边
4、形,则DAO与DCO的度数和是()A60B45C35D3012如图,则的度数为( )A115B110C105D65二、填空题:(本大题共6个小题,每小题4分,共24分)13观察图形,根据图形面积的关系,不需要连其他的线,便可以得到一个用来分解因式的公式,这个公式是_14在平面直角坐标系的第一象限内,边长为1的正方形ABCD的边均平行于坐标轴,A点的坐标为(a,a)如图,若曲线 与此正方形的边有交点,则a的取值范围是_15如图,在等边ABC中,AB=4,D是BC的中点,将ABD绕点A旋转后得到ACE,连接DE交AC于点F,则AEF的面积为_16若关于的一元二次方程有实数根,则的取值范围是_17如
5、图,在平面直角坐标系中,以坐标原点O为位似中心在y轴的左侧将OAB缩小得到OAB,若OAB与OAB的相似比为2:1,则点B(3,2)的对应点B的坐标为_18如图所示:在平面直角坐标系中,OCB的外接圆与y轴交于A(0,),OCB=60,COB=45,则OC= 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,在平面直角坐标系中,OAOB,ABx轴于点C,点A(,1)在反比例函数的图象上求反比例函数的表达式;在x轴的负半轴上存在一点P,使得SAOP=SAOB,求点P的坐标;若将BOA绕点B按逆时针方向旋转60得到BDE,直接写出点E的坐标,并判断点
6、E是否在该反比例函数的图象上,说明理由20(6分) “低碳生活,绿色出行”是我们倡导的一种生活方式,有关部门抽样调查了某单位员工上下班的交通方式,绘制了两幅统计图:(1)样本中的总人数为人;扇形统计十图中“骑自行车”所在扇形的圆心角为度;(2)补全条形统计图;(3)该单位共有1000人,积极践行这种生活方式,越来越多的人上下班由开私家车改为骑自行车若步行,坐公交车上下班的人数保持不变,问原来开私家车的人中至少有多少人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数?21(6分)一艘观光游船从港口A以北偏东60的方向出港观光,航行80海里至C处时发生了侧翻沉船事故,立即发出了求救信号,一艘
7、在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东37方向,马上以40海里每小时的速度前往救援,求海警船到大事故船C处所需的大约时间(温馨提示:sin530.8,cos530.6)22(8分)如图,矩形ABCD中,点E为BC上一点,DFAE于点F,求证:AEBCDF.23(8分)解方程24(10分)如图1,在菱形ABCD中,AB,tanABC2,点E从点D出发,以每秒1个单位长度的速度沿着射线DA的方向匀速运动,设运动时间为t(秒),将线段CE绕点C顺时针旋转一个角(BCD),得到对应线段CF(1)求证:BEDF;(2)当t 秒时,DF的长度有最小值,最小值等于 ;(3)如图2,连接B
8、D、EF、BD交EC、EF于点P、Q,当t为何值时,EPQ是直角三角形?25(10分)我们把两条中线互相垂直的三角形称为“中垂三角形”例如图1,图2,图1中,AF,BE是ABC的中线,AFBE,垂足为P,像ABC这样的三角形均为“中垂三角形”设BCa,ACb,ABc特例探索(1)如图1,当ABE45,c时,a ,b ;如图2,当ABE10,c4时,a ,b ;归纳证明(2)请你观察(1)中的计算结果,猜想a2,b2,c2三者之间的关系,用等式表示出来,请利用图1证明你发现的关系式;拓展应用(1)如图4,在ABCD中,点E,F,G分别是AD,BC,CD的中点,BEEG,AD,AB1求AF的长26
9、(12分)如图,海中有一个小岛 A,该岛四周 11 海里范围内有暗礁有一货轮在海面上由西向正东方向航行,到达B处时它在小岛南偏西60的方向上,再往正东方向行驶10海里后恰好到达小岛南偏西45方向上的点C处问:如果货轮继续向正东方向航行,是否会有触礁的危险?(参考数据:1.41,1.73)27(12分)已知关于x的一元二次方程x2(2k+1)x+k2+k1(1)求证:方程有两个不相等的实数根;(2)当方程有一个根为1时,求k的值参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、A【解析】O的直径AB=2,C=90,C是弧AB的中点
10、,AC=BC,CAB=CBA=45,AE,BE分别平分BAC和ABC,EAB=EBA=22.5,AEB=180 (BAC+CBA)=135,连接EO,EAB=EBA,EA=EB,OA=OB,EOAB,EO为RtABC内切圆半径,SABC=(AB+AC+BC)EO=ACBC,EO=1,AE2=AO2+EO2=12+(1)2=42,扇形EAB的面积=,ABE的面积=ABEO=1,弓形AB的面积=扇形EAB的面积ABE的面积=,阴影部分的面积=O的面积弓形AB的面积=()=4,故选:A.2、B【解析】易证CFEBEA,可得,根据二次函数图象对称性可得E在BC中点时,CF有最大值,列出方程式即可解题【
11、详解】若点E在BC上时,如图EFC+AEB90,FEC+EFC90,CFEAEB,在CFE和BEA中,CFEBEA,由二次函数图象对称性可得E在BC中点时,CF有最大值,此时,BECEx,即,当y时,代入方程式解得:x1(舍去),x2,BECE1,BC2,AB,矩形ABCD的面积为25;故选B【点睛】本题考查了二次函数顶点问题,考查了相似三角形的判定和性质,考查了矩形面积的计算,本题中由图象得出E为BC中点是解题的关键3、B【解析】根据二次根式的性质,被开方数大于等于0,列不等式求解【详解】根据题意得:x10,解得x1,则自变量x的取值范围是x1故选B【点睛】本题主要考查函数自变量的取值范围的
12、知识点,注意:二次根式的被开方数是非负数4、C【解析】首先求出二次函数的图象的对称轴x=2,且由a=10,可知其开口向上,然后由A(2,)中x=2,知最小,再由B(-3,),C(-1,)都在对称轴的左侧,而在对称轴的左侧,y随x得增大而减小,所以总结可得故选C点睛:此题主要考查了二次函数的图像与性质,解答此题的关键是(1)找到二次函数的对称轴;(2)掌握二次函数的图象性质5、D【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解
13、】解:10700=1.07104,故选:D【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值6、D【解析】试题分析:=22-44=-120,即82-4q0,q16,故选 A.8、A【解析】由图象的点的坐标,根据待定系数法求得解析式即可判定【详解】由图象可知:抛物线y1的顶点为(-2,-2),与y轴的交点为(0,1),根据待定系数法求得y1=(x+2)2-2;抛物线y2的顶点为(0,-1),与x轴的一个交点为(1,0),根据待定系数法求得y2=x2-1;抛物线y3的顶点为(1,1),与y轴的交点为(0,2),
14、根据待定系数法求得y3=(x-1)2+1;抛物线y4的顶点为(1,-3),与y轴的交点为(0,-1),根据待定系数法求得y4=2(x-1)2-3;综上,解析式中的二次项系数一定小于1的是y1故选A【点睛】本题考查了二次函数的图象,二次函数的性质以及待定系数法求二次函数的解析式,根据点的坐标求得解析式是解题的关键9、D【解析】用科学记数法表示较大的数时,一般形式为a10n,其中1|a|10,n为整数,据此判断即可【详解】28600=2.861故选D【点睛】此题主要考查了用科学记数法表示较大的数,一般形式为a10n,其中1|a|10,确定a与n的值是解题的关键10、C【解析】根据绝对值的定义解答即
15、可.【详解】|-3|=3故选:C【点睛】本题考查的是绝对值,理解绝对值的定义是关键.11、A【解析】试题解析:连接OD,四边形ABCO为平行四边形,B=AOC,点A. B. C.D在O上,由圆周角定理得, 解得, OA=OD,OD=OC,DAO=ODA,ODC=DCO,故选A.点睛:在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半.12、A【解析】根据对顶角相等求出CFB65,然后根据CDEB,判断出B115【详解】AFD65,CFB65,CDEB,B18065115,故选:A【点睛】本题考查了平行线的性质,知道“两直线平行,同旁内角互补”是解题的关键二、填空题:(本大题共6个小题,每小
16、题4分,共24分)13、【解析】由图形可得:14、1a【解析】根据题意得出C点的坐标(a-1,a-1),然后分别把A、C的坐标代入求得a的值,即可求得a的取值范围【详解】解:反比例函数经过点A和点C当反比例函数经过点A时,即=3,解得:a=(负根舍去);当反比例函数经过点C时,即=3,解得:a=1(负根舍去),则1a故答案为: 1a【点睛】本题考查的是反比例函数图象上点的坐标特点,关键是掌握反比例函数y=(k为常数,k0)的图象上的点(x,y)的横纵坐标的积是定值k,即xy=k15、【解析】首先,利用等边三角形的性质求得AD=2;然后根据旋转的性质、等边三角形的性质推知ADE为等边三角形,则D
17、E=AD,便可求出EF和AF,从而得到AEF的面积.【详解】解:在等边ABC中,B=60,AB=4,D是BC的中点,ADBC,BAD=CAD=30,AD=ABcos30=4=2,根据旋转的性质知,EAC=DAB=30,AD=AE,DAE=EAC+CAD=60,ADE的等边三角形,DE=AD=2,AEF=60,EAC=CADEF=DF=,AFDEAF=EFtan60=3,SAEF=EFAF=3=.故答案为:.【点睛】本题考查了旋转的性质,等边三角形的判定与性质,熟记各性质并求出ADE是等边三角形是解题的关键16、【解析】由题意可得,=9-4m0,由此求得m的范围【详解】关于x的一元二次方程x2-
18、3x+m=0有实数根,=9-4m0,求得 m.故答案为:【点睛】本题考核知识点:一元二次方程根判别式. 解题关键点:理解一元二次方程根判别式的意义.17、(-,1)【解析】根据如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或k进行解答【详解】解:以原点O为位似中心,相似比为:2:1,将OAB缩小为OAB,点B(3,2)则点B(3,2)的对应点B的坐标为:(-,1),故答案为(-,1)【点睛】本题考查了位似变换:位似图形与坐标,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或k18、1+【解析】试题分析:连接AB
19、,由圆周角定理知AB必过圆心M,RtABO中,易知BAO=OCB=60,已知了OA=,即可求得OB的长;过B作BDOC,通过解直角三角形即可求得OD、BD、CD的长,进而由OC=OD+CD求出OC的长解:连接AB,则AB为M的直径RtABO中,BAO=OCB=60,OB=OA=过B作BDOC于DRtOBD中,COB=45,则OD=BD=OB=RtBCD中,OCB=60,则CD=BD=1OC=CD+OD=1+故答案为1+点评:此题主要考查了圆周角定理及解直角三角形的综合应用能力,能够正确的构建出与已知和所求相关的直角三角形是解答此题的关键三、解答题:(本大题共9个小题,共78分,解答应写出文字说
20、明、证明过程或演算步骤19、(1);(2)P(,0);(3)E(,1),在【解析】(1)将点A(,1)代入,利用待定系数法即可求出反比例函数的表达式;(2)先由射影定理求出BC=3,那么B(,3),计算求出SAOB=4=则SAOP=SAOB=设点P的坐标为(m,0),列出方程求解即可;(3)先解OAB,得出ABO=30,再根据旋转的性质求出E点坐标为(,1),即可求解【详解】(1)点A(,1)在反比例函数的图象上,k=1=,反比例函数的表达式为;(2)A(,1),ABx轴于点C,OC=,AC=1,由射影定理得=ACBC,可得BC=3,B(,3),SAOB=4=,SAOP=SAOB=设点P的坐标
21、为(m,0),|m|1=,|m|=,P是x轴的负半轴上的点,m=,点P的坐标为(,0);(3)点E在该反比例函数的图象上,理由如下:OAOB,OA=2,OB=,AB=4,sinABO=,ABO=30,将BOA绕点B按逆时针方向旋转60得到BDE,BOABDE,OBD=60,BO=BD=,OA=DE=2,BOA=BDE=90,ABD=30+60=90,而BDOC=,BCDE=1,E(,1),(1)=,点E在该反比例函数的图象上考点:待定系数法求反比例函数解析式;反比例函数系数k的几何意义;坐标与图形变化-旋转20、 (1) 80、72;(2) 16人;(3) 50人【解析】(1) 用步行人数除以
22、其所占的百分比即可得到样本总人数:810%=80(人);用总人数乘以开私家车的所占百分比即可求出,即 m=8025%=20;用3600乘以骑自行车所占的百分比即可求出其所在扇形的圆心角:360(1-10%-25%-45%)=.(2) 根据扇形统计图算出骑自行车的所占百分比, 再用总人数乘以该百分比即可求出骑自行车的人数, 补全条形图即可(3) 依题意设原来开私家车的人中有x人改为骑自行车, 用x分别表示改变出行方式后的骑自行车和开私家车的人数, 根据题意列出一元一次不等式, 解不等式即可【详解】解:(1)样本中的总人数为810%=80人,骑自行车的百分比为1(10%+25%+45%)=20%,
23、扇形统计十图中“骑自行车”所在扇形的圆心角为36020%=72(2)骑自行车的人数为8020%=16人,补全图形如下:(3)设原来开私家车的人中有x人改骑自行车,由题意,得:1000(110%25%45%)+x100025%x,解得:x50,原来开私家车的人中至少有50人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数【点睛】本题主要考查统计图表和一元一次不等式的应用。21、小时【解析】过点C作CDAB交AB延长线于D先解RtACD得出CD=AC=40海里,再解RtCBD中,得出BC=50,然后根据时间=路程速度即可求出海警船到大事故船C处所需的时间【详解】解:如图,过点C作CDAB交A
24、B延长线于D在RtACD中,ADC=90,CAD=30,AC=80海里,CD=AC=40海里在RtCBD中,CDB=90,CBD=9037=53,BC=50(海里),海警船到大事故船C处所需的时间大约为:5040=(小时)考点:解直角三角形的应用-方向角问题22、见解析.【解析】利用矩形的性质结合平行线的性质得出CDF+ADF90,进而得出CDFDAF,由ADBC,得出答案.【详解】四边形ABCD是矩形,ADC90,ADBC,CDF+ADF90,DFAE于点F,DAF+ADF90,CDFDAF.ADBC,DAFAEB,AEBCDF.【点睛】此题主要考查了矩形的性质以及平行线的性质,正确得出CD
25、FDAF是解题关键.23、x=-1【解析】解:方程两边同乘x-2,得2x=x-2+1解这个方程,得x= -1检验:x= -1时,x-20原方程的解是x= -1首先去掉分母,观察可得最简公分母是(x2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解24、(1)见解析;(2)t(6+6),最小值等于12;(3)t6秒或6秒时,EPQ是直角三角形【解析】(1)由ECFBCD得DCFBCE,结合DCBC、CECF证DCFBCE即可得;(2)作BEDA交DA的延长线于E当点E运动至点E时,由DFBE知此时DF最小,求得BE、AE即可得答案;(3)EQP90
26、时,由ECFBCD、BCDC、ECFC得BCPEQP90,根据ABCD6,tanABCtanADC2即可求得DE;EPQ90时,由菱形ABCD的对角线ACBD知EC与AC重合,可得DE6.【详解】(1)ECFBCD,即BCE+DCEDCF+DCE,DCFBCE,四边形ABCD是菱形,DCBC,在DCF和BCE中,,DCFBCE(SAS),DFBE;(2)如图1,作BEDA交DA的延长线于E当点E运动至点E时,DFBE,此时DF最小,在RtABE中,AB6,tanABCtanBAE2,设AEx,则BE2x,ABx6,x6,则AE6DE6+6,DFBE12,时间t=6+6,故答案为:6+6,12;
27、(3)CECF,CEQ90,当EQP90时,如图2,ECFBCD,BCDC,ECFC,CBDCEF,BPCEPQ,BCPEQP90,ABCD6,tanABCtanADC2,DE6,t6秒;当EPQ90时,如图2,菱形ABCD的对角线ACBD,EC与AC重合,DE6,t6秒,综上所述,t6秒或6秒时,EPQ是直角三角形【点睛】此题是菱形与动点问题,考查菱形的性质,三角形全等的判定定理,等腰三角形的性质,最短路径问题,注意(3)中的直角没有明确时应分情况讨论解答.25、(1)2,2;2,2;(2)+=5;(1)AF=2【解析】试题分析:(1)AFBE,ABE=25,AP=BP=AB=2,AF,BE
28、是ABC的中线,EFAB,EF=AB=,PFE=PEF=25,PE=PF=1,在RtFPB和RtPEA中,AE=BF=,AC=BC=2,a=b=2,如图2,连接EF,同理可得:EF=2=2,EFAB,PEFABP,在RtABP中,AB=2,ABP=10,AP=2,PB=2,PF=1,PE=,在RtAPE和RtBPF中,AE=,BF=,a=2,b=2,故答案为2,2,2,2;(2)猜想:a2+b2=5c2,如图1,连接EF,设ABP=,AP=csin,PB=ccos,由(1)同理可得,PF=PA=,PE=,AE2=AP2+PE2=c2sin2+,BF2=PB2+PF2=+c2cos2,=c2si
29、n2+,=+c2cos2,+=+c2cos2+c2sin2+,a2+b2=5c2;(1)如图2,连接AC,EF交于H,AC与BE交于点Q,设BE与AF的交点为P,点E、G分别是AD,CD的中点,EGAC,BEEG,BEAC,四边形ABCD是平行四边形,ADBC,AD=BC=2,EAH=FCH,E,F分别是AD,BC的中点,AE=AD,BF=BC,AE=BF=CF=AD=,AEBF,四边形ABFE是平行四边形,EF=AB=1,AP=PF,在AEH和CFH中,AEHCFH,EH=FH,EQ,AH分别是AFE的中线,由(2)的结论得:AF2+EF2=5AE2,AF2=5EF2=16,AF=2考点:相
30、似形综合题26、不会有触礁的危险,理由见解析. 【解析】分析:作AHBC,由CAH=45,可设AH=CH=x,根据可得关于x的方程,解之可得详解:过点A作AHBC,垂足为点H 由题意,得BAH=60,CAH=45,BC=1 设AH=x,则CH=x 在RtABH中,解得:13.6511,货轮继续向正东方向航行,不会有触礁的危险点睛:本题考查了解直角三角形的应用方向角问题,解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线27、(2)证明见解析;(2)k22,k22【解析】(2)套入数据求出b24ac的值,再与2作比较,由于22,从而证出方程有两个不相等的实数根;(2)将x2代入原方程,得出关于k的一元二次方程,解方程即可求出k的值【详解】(2)证明:b24ac,(2k+2)24(k2+k),4k2+4k+24k24k,22方程有两个不相等的实数根;(2)方程有一个根为2,22(2k+2)+k2+k2,即k2k2,解得:k22,k22【点睛】本题考查了根的判别式以及解一元二次方程,解题的关键是:(2)求出b24ac的值;(2)代入x2得出关于k的一元二次方程本题属于基础题,难度不大,解决该题型题目时,由根的判别式来判断实数根的个数是关键