宁夏银川市宁夏大附中2023年初中数学毕业考试模拟冲刺卷含解析.doc

上传人:lil****205 文档编号:87997832 上传时间:2023-04-19 格式:DOC 页数:24 大小:830.50KB
返回 下载 相关 举报
宁夏银川市宁夏大附中2023年初中数学毕业考试模拟冲刺卷含解析.doc_第1页
第1页 / 共24页
宁夏银川市宁夏大附中2023年初中数学毕业考试模拟冲刺卷含解析.doc_第2页
第2页 / 共24页
点击查看更多>>
资源描述

《宁夏银川市宁夏大附中2023年初中数学毕业考试模拟冲刺卷含解析.doc》由会员分享,可在线阅读,更多相关《宁夏银川市宁夏大附中2023年初中数学毕业考试模拟冲刺卷含解析.doc(24页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1不等式组的解集在数轴上表示为()ABCD2方程的解为()Ax=1Bx=1Cx=2Dx=33下列运算正确的是( )A4x+

2、5y=9xyB(m)3m7=m10C(x3y)5=x8y5Da12a8=a44如图,在射线OA,OB上分别截取OA1=OB1,连接A1B1,在B1A1,B1B上分别截取B1A2=B1B2,连接A2B2,按此规律作下去,若A1B1O=,则A10B10O=()ABCD5如图,在RtABC中,BC=2,BAC=30,斜边AB的两个端点分别在相互垂直的射线OM,ON上滑动,下列结论:若C,O两点关于AB对称,则OA=;C,O两点距离的最大值为4;若AB平分CO,则ABCO;斜边AB的中点D运动路径的长为其中正确的是()ABCD6已知函数y=(k-1)x2-4x+4的图象与x轴只有一个交点,则k的取值范

3、围是( )Ak2且k1Bk2且k1Ck=2Dk=2或17下列美丽的图案中,不是轴对称图形的是( )ABCD8如图所示,ab,直线a与直线b之间的距离是( )A线段PA的长度B线段PB的长度C线段PC的长度D线段CD的长度9如图,下列条件不能判定ADBABC的是( )AABD=ACBBADB=ABCCAB2=ADACD 10已知二次函数yax2+bx+c的图象如图所示,有以下结论:a+b+c0;ab+c1;abc0;4a2b+c0;ca1,其中所有正确结论的序号是()ABCD11如图,在底边BC为2,腰AB为2的等腰三角形ABC中,DE垂直平分AB于点D,交BC于点E,则ACE的周长为( )A2

4、+B2+2C4D312反比例函数y=的图象与直线y=x+2有两个交点,且两交点横坐标的积为负数,则t的取值范围是( )At Bt Ct Dt二、填空题:(本大题共6个小题,每小题4分,共24分)13化简的结果等于_14如图,在菱形ABCD中,AB=,B=120,点E是AD边上的一个动点(不与A,D重合),EFAB交BC于点F,点G在CD上,DG=DE若EFG是等腰三角形,则DE的长为_15如图,已知,D、E分别是边BA、CA延长线上的点,且如果,那么AE的长为_16的算术平方根是_.17为了估计池塘里有多少条鱼,从池塘里捕捞了1000条鱼做上标记,然后放回池塘里,经过一段时间,等有标记的鱼完全

5、混合于鱼群中以后,再捕捞200条,若其中有标记的鱼有10条,则估计池塘里有鱼_条18李明早上骑自行车上学,中途因道路施工推车步行了一段路,到学校共用时15分钟如果他骑自行车的平均速度是每分钟250米,推车步行的平均速度是每分钟80米,他家离学校的路程是2900米,设他推车步行的时间为x分钟,那么可列出的方程是_.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,在ABC中,(1)求作:BAD=C,AD交BC于D(用尺规作图法,保留作图痕迹,不要求写作法)(2)在(1)条件下,求证:AB2=BDBC20(6分)为了保障市民安全用水,我市启动自来水管

6、改造工程,该工程若甲队单独施工,恰好在规定时间内完成;若由乙队单独施工,则完成工程所需天数是规定天数的3倍若甲、乙两队先合作施工45天,则余下的工程甲队还需单独施工23天才能完成这项工程的规定时间是多少天?21(6分)如图,在ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF(1)求证:四边形BCFE是菱形;(2)若CE=4,BCF=120,求菱形BCFE的面积22(8分)解不等式组23(8分)近年来,共享单车服务的推出(如图1),极大的方便了城市公民绿色出行,图2是某品牌某型号单车的车架新投放时的示意图(车轮半径约为30cm),其中BC直线l,BC

7、E=71,CE=54cm(1)求单车车座E到地面的高度;(结果精确到1cm)(2)根据经验,当车座E到CB的距离调整至等于人体胯高(腿长)的0.85时,坐骑比较舒适小明的胯高为70cm,现将车座E调整至座椅舒适高度位置E,求EE的长(结果精确到0.1cm)(参考数据:sin710.95,cos710.33,tan712.90)24(10分)在平面直角坐标系xOy中,二次函数yax2+bx+c(a0)的图象经过A(0,4),B(2,0),C(-2,0)三点(1)求二次函数的表达式;(2)在x轴上有一点D(-4,0),将二次函数的图象沿射线DA方向平移,使图象再次经过点B求平移后图象顶点E的坐标;

8、直接写出此二次函数的图象在A,B两点之间(含A,B两点)的曲线部分在平移过程中所扫过的面积25(10分)为缓解交通压力,市郊某地正在修建地铁站,拟同步修建地下停车库如图是停车库坡道入口的设计图,其中MN是水平线,MNAD,ADDE,CFAB,垂足分别为D,F,坡道AB的坡度1:3,AD9米,点C在DE上,CD0.5米,CD是限高标志牌的高度(标志牌上写有:限高 米)如果进入该车库车辆的高度不能超过线段CF的长,则该停车库限高多少米?(结果精确到0.1米,参考数据:1.41,1.73,3.16)26(12分)解方程组: 27(12分)问题情境:课堂上,同学们研究几何变量之间的函数关系问题:如图,

9、菱形ABCD的对角线AC,BD相交于点O,AC=4,BD=1点P是AC上的一个动点,过点P作MNAC,垂足为点P(点M在边AD、DC上,点N在边AB、BC上)设AP的长为x(0x4),AMN的面积为y建立模型:(1)y与x的函数关系式为:,解决问题:(1)为进一步研究y随x变化的规律,小明想画出此函数的图象请你补充列表,并在如图的坐标系中画出此函数的图象:x01134y0 0(3)观察所画的图象,写出该函数的两条性质: 参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、A【解析】根据不等式组的解集在数轴上表示的方法即可解答.【详

10、解】x2,故以2为实心端点向右画,x1,故以1为空心端点向左画故选A【点睛】本题考查了不等式组解集的在数轴上的表示方法,不等式的解集在数轴上表示方法为:、向右画,、向左画, “”、“”要用实心圆点表示;“”要用空心圆点表示.2、B【解析】观察可得最简公分母是(x-3)(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解【详解】方程的两边同乘(x3)(x+1),得(x2) (x+1)=x(x3),解得x=1.检验:把x=1代入(x3)(x+1)=-40.原方程的解为:x=1.故选B.【点睛】本题考查的知识点是解分式方程,解题关键是注意解得的解要进行检验.3、D【解析】各式计算得到结

11、果,即可作出判断【详解】解:A、4x+5y=4x+5y,错误;B、(-m)3m7=-m10,错误;C、(x3y)5=x15y5,错误;D、a12a8=a4,正确;故选D【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键4、B【解析】根据等腰三角形两底角相等用表示出A2B2O,依此类推即可得到结论【详解】B1A2B1B2,A1B1O,A2B2O,同理A3B3O,A4B4O,AnBnO,A10B10O,故选B【点睛】本题考查了等腰三角形两底角相等的性质,图形的变化规律,依次求出相邻的两个角的差,得到分母成2的指数次幂变化,分子不变的规律是解题的关键5、D【解析】分析:先根据直角三角形

12、30的性质和勾股定理分别求AC和AB,由对称的性质可知:AB是OC的垂直平分线,所以当OC经过AB的中点E时,OC最大,则C、O两点距离的最大值为4;如图2,当ABO=30时,易证四边形OACB是矩形,此时AB与CO互相平分,但所夹锐角为60,明显不垂直,或者根据四点共圆可知:A、C、B、O四点共圆,则AB为直径,由垂径定理相关推论:平分弦(不是直径)的直径垂直于这条弦,但当这条弦也是直径时,即OC是直径时,AB与OC互相平分,但AB与OC不一定垂直;如图3,半径为2,圆心角为90,根据弧长公式进行计算即可详解:在RtABC中, 若C.O两点关于AB对称,如图1,AB是OC的垂直平分线,则所以

13、正确;如图1,取AB的中点为E,连接OE、CE, 当OC经过点E时,OC最大,则C.O两点距离的最大值为4;所以正确;如图2,当时, 四边形AOBC是矩形,AB与OC互相平分,但AB与OC的夹角为不垂直,所以不正确;如图3,斜边AB的中点D运动路径是:以O为圆心,以2为半径的圆周的则:所以正确;综上所述,本题正确的有:;故选D.点睛:属于三角形的综合体,考查了直角三角形的性质,直角三角形斜边上中线的性质,轴对称的性质,弧长公式等,熟练掌握直角三角形斜边的中线等于斜边的一半是解题的关键.6、D【解析】当k+1=0时,函数为一次函数必与x轴有一个交点;当k+10时,函数为二次函数,根据条件可知其判

14、别式为0,可求得k的值【详解】当k-1=0,即k=1时,函数为y=-4x+4,与x轴只有一个交点;当k-10,即k1时,由函数与x轴只有一个交点可知,=(-4)2-4(k-1)4=0,解得k=2,综上可知k的值为1或2,故选D【点睛】本题主要考查函数与x轴的交点,掌握二次函数与x轴只有一个交点的条件是解题的关键,解决本题时注意考虑一次函数和二次函数两种情况7、A【解析】根据轴对称图形的概念对各选项分析判断即可得解【详解】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误故选A【点睛】本题考查了轴对称图形的概念,轴

15、对称图形的关键是寻找对称轴,图形两部分折叠后可重合8、A【解析】分析:从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离,由此可得出答案.详解:ab,APBC两平行直线a、b之间的距离是AP的长度根据平行线间的距离相等直线a与直线b之间的距离AP的长度故选A.点睛:本题考查了平行线之间的距离,属于基础题,关键是掌握平行线之间距离的定义.9、D【解析】根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可【详解】解:A、ABD=ACB,A=A,ABCADB,故此选项不合题意;B、ADB=ABC,A=A,ABCADB,故此选

16、项不合题意;C、AB2=ADAC,A=A,ABCADB,故此选项不合题意;D、=不能判定ADBABC,故此选项符合题意故选D【点睛】点评:本题考查了相似三角形的判定,利用了有两个角对应相等的三角形相似,两边对应成比例且夹角相等的两个三角形相似10、C【解析】根据二次函数的性质逐项分析可得解.【详解】解:由函数图象可得各系数的关系:a0,b0,c0,则当x=1时,y=a+b+c0,正确;当x=-1时,y=a-b+c1,正确;abc0,正确;对称轴x=-1,则x=-2和x=0时取值相同,则4a-2b+c=10,错误;对称轴x=-=-1,b=2a,又x=-1时,y=a-b+c1,代入b=2a,则c-

17、a1,正确故所有正确结论的序号是故选C11、B【解析】分析:根据线段垂直平分线的性质,把三角形的周长问题转化为线段和的问题解决即可.详解:DE垂直平分AB,BE=AE,AE+CE=BC=2,ACE的周长=AC+AE+CE=AC+BC=2+2,故选B点睛:本题考查了等腰三角形性质和线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等12、B【解析】将一次函数解析式代入到反比例函数解析式中,整理得出x22x+16t=0,又因两函数图象有两个交点,且两交点横坐标的积为负数,根据根的判别式以及根与系数的关系可求解【详解】由题意可得:x+2=,所以x22x+16t=0,两函数图象

18、有两个交点,且两交点横坐标的积为负数, 解不等式组,得t故选:B点睛:此题主要考查了反比例函数与一次函数的交点问题,关键是利用两个函数的解析式构成方程,再利用一元二次方程的根与系数的关系求解.二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】先通分变为同分母分式,然后根据分式的减法法则计算即可【详解】解:原式故答案为:【点睛】此题考查的是分式的减法,掌握分式的减法法则是解决此题的关键14、1或 【解析】由四边形ABCD是菱形,得到BCAD,由于EFAB,得到四边形ABFE是平行四边形,根据平行四边形的性质得到EFAB,于是得到EF=AB=,当EFG为等腰三角形时,EF=GE=

19、时,于是得到DE=DG=AD=1,GE=GF时,根据勾股定理得到DE=【详解】解:四边形ABCD是菱形,B=120,D=B=120,A=180-120=60,BCAD,EFAB,四边形ABFE是平行四边形,EFAB,EF=AB=,DEF=A=60,EFC=B=120,DE=DG,DEG=DGE=30,FEG=30,当EFG为等腰三角形时,当EF=EG时,EG=,如图1,过点D作DHEG于H,EH=EG=,在RtDEH中,DE=1,GE=GF时,如图2,过点G作GQEF,EQ=EF=,在RtEQG中,QEG=30,EG=1,过点D作DPEG于P,PE=EG=,同的方法得,DE=,当EF=FG时,

20、由EFG=180-230=120=CFE,此时,点C和点G重合,点F和点B重合,不符合题意,故答案为1或【点睛】本题考查了菱形的性质,平行四边形的性质,等腰三角形的性质以及勾股定理,熟练掌握各性质是解题的关键15、【解析】由DEBC不难证明ABCADE,再由,将题中数值代入并根据等量关系计算AE的长.【详解】解:由DEBC不难证明ABCADE,,CE=4,,解得:AE=故答案为.【点睛】本题考查了相似三角形的判定和性质,熟记三角形的判定和性质是解题关键.16、3【解析】根据算术平方根定义,先化简,再求的算术平方根.【详解】因为=9所以的算术平方根是3故答案为3【点睛】此题主要考查了算术平方根的

21、定义,解题需熟练掌握平方根和算术平方根的概念且区分清楚,才不容易出错要熟悉特殊数字0,1,-1的特殊性质17、20000【解析】试题分析:1000=20000(条)考点:用样本估计总体18、【解析】分析:根据题意把李明步行和骑车各自所走路程表达出来,再结合步行和骑车所走总里程为2900米,列出方程即可.详解:设他推车步行的时间为x分钟,根据题意可得:80x+250(15-x)=2900.故答案为80x+250(15-x)=2900.点睛:弄清本题中的等量关系:李明推车步行的路程+李明骑车行驶的路程=2900是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演

22、算步骤19、(1)作图见解析;(2)证明见解析;【解析】(1)以C为圆心,任意长为半径画弧,交CB、CA于E、F;以A为圆心,CE长为半径画弧,交AB于G;以G为圆心,EF长为半径画弧,两弧交于H;连接AH并延长交BC于D,则BAD=C;(2)证明ABDCBA,然后根据相似三角形的性质得到结论【详解】(1)如图,BAD为所作;(2)BAD=C,B=BABDCBA,AB:BC=BD:AB,AB2=BDBC【点睛】本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线; 过一点作已知直线的垂线)也考查了相似三角形的判定与性质20

23、、这项工程的规定时间是83天【解析】依据题意列分式方程即可.【详解】设这项工程的规定时间为x天,根据题意得 .解得x83.检验:当x83时,3x0.所以x83是原分式方程的解答:这项工程的规定时间是83天【点睛】正确理解题意是解题的关键,注意检验.21、(1)见解析;(2)见解析【解析】(1)从所给的条件可知,DE是ABC中位线,所以DEBC且2DE=BC,所以BC和EF平行且相等,所以四边形BCFE是平行四边形,又因为BE=FE,所以四边形BCFE是菱形(2)因为BCF=120,所以EBC=60,所以菱形的边长也为4,求出菱形的高面积就可【详解】解:(1)证明:D、E分别是AB、AC的中点,

24、DEBC且2DE=BC又BE=2DE,EF=BE,EF=BC,EFBC四边形BCFE是平行四边形又BE=FE,四边形BCFE是菱形(2)BCF=120,EBC=60EBC是等边三角形菱形的边长为4,高为菱形的面积为4=22、x1【解析】分析:按照解一元一次不等式组的一般步骤解答即可.详解:,由得x1,由得x1,原不等式组的解集是x1点睛:“熟练掌握一元一次不等式组的解法”是正确解答本题的关键.23、(1)81cm;(2)8.6cm;【解析】(1)作EMBC于点M,由EM=ECsinBCE可得答案;(2)作EHBC于点H,先根据EC=求得EC的长度,再根据EE=CECE可得答案【详解】(1)如图

25、1,过点E作EMBC于点M由题意知BCE=71、EC=54,EM=ECsinBCE=54sin7151.3,则单车车座E到地面的高度为51.3+3081cm;(2)如图2所示,过点E作EHBC于点H由题意知EH=700.85=59.5,则EC=62.6,EE=CECE=62.654=8.6(cm)【点睛】本题考查了解直角三角形的应用,解题的关键是明确题意,利用锐角三角函数进行解答24、(1)yx2+4;(2)E(5,9);1.【解析】(1)待定系数法即可解题,(2)求出直线DA的解析式,根据顶点E在直线DA上,设出E的坐标,带入即可求解;AB扫过的面积是平行四边形ABGE,根据S四边形ABGE

26、S矩形IOKHSAOBSAEISEHGSGBK,求出点B(2,0),G(7,5),A(0,4),E(5,9),根据坐标几何含义即可解题.【详解】解:(1)A(0,4),B(2,0),C(2,0)二次函数的图象的顶点为A(0,4),设二次函数表达式为yax2+4,将B(2,0)代入,得4a+40,解得,a1,二次函数表达式yx2+4;(2)设直线DA:ykx+b(k0),将A(0,4),D(4,0)代入,得 ,解得, ,直线DA:yx+4,由题意可知,平移后的抛物线的顶点E在直线DA上,设顶点E(m,m+4),平移后的抛物线表达式为y(xm)2+m+4,又平移后的抛物线过点B(2,0),将其代入

27、得,(2m)2+m+40,解得,m15,m20(不合题意,舍去),顶点E(5,9),如图,连接AB,过点B作BLAD交平移后的抛物线于点G,连结EG,四边形ABGE的面积就是图象A,B两点间的部分扫过的面积,过点G作GKx轴于点K,过点E作EIy轴于点I,直线EI,GK交于点H由点A(0,4)平移至点E(5,9),可知点B先向右平移5个单位,再向上平移5个单位至点GB(2,0),点G(7,5),GK5,OB2,OK7,BKOKOB725,A(0,4),E(5,9),AI945,EI5,EH752,HG954,S四边形ABGES矩形IOKHSAOBSAEISEHGSGBK792455245563

28、8251答:图象A,B两点间的部分扫过的面积为1【点睛】本题考查了二次函数解析式的求法,二次函数的图形和性质,二次函数的实际应用,难度较大,建立面积之间的等量关系是解题关键.25、2.1【解析】据题意得出tanB = , 即可得出tanA, 在RtADE中, 根据勾股定理可求得DE, 即可得出FCE的正切值, 再在RtCEF中, 设EF=x,即可求出x, 从而得出CF=1x的长.【详解】解:据题意得tanB=,MNAD,A=B,tanA=,DEAD,在RtADE中,tanA=,AD=9,DE=1,又DC=0.5,CE=2.5,CFAB,FCE+CEF=90,DEAD,A+CEF=90,A=FC

29、E,tanFCE=在RtCEF中,CE2=EF2+CF2设EF=x,CF=1x(x0),CE=2.5,代入得()2=x2+(1x)2解得x=(如果前面没有“设x0”,则此处应“x=,舍负”),CF=1x=2.1,该停车库限高2.1米【点睛】点评: 本题考查了解直角三角形的应用, 坡面坡角问题和勾股定理, 解题的关键是坡度等于坡角的正切值.26、【解析】方程组整理后,利用加减消元法求出解即可【详解】解:方程组整理得: +得:9x=-45,即x=-5,把x=-代入得: 解得:则原方程组的解为【点睛】本题主要考查二元一次方程组的解法,二元一次方程组的解法有两种:代入消元法和加减消元法,根据题目选择合适的方法27、 (1) y=;(1)见解析;(3)见解析【解析】(1)根据线段相似的关系得出函数关系式(1)代入中函数表达式即可填表(3)画图像,分析即可.【详解】(1)设AP=x当0x1时MNBDAPMAODMP=AC垂直平分MNPN=PM=xMN=xy=APMN=当1x4时,P在线段OC上,CP=4xCPMCODPM=MN=1PM=4xy=y=(1)由(1)当x=1时,y=当x=1时,y=1当x=3时,y=(3)根据(1)画出函数图象示意图可知1、当0x1时,y随x的增大而增大1、当1x4时,y随x的增大而减小【点睛】本题考查函数,解题的关键是数形结合思想.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁