《北京市怀柔区达标名校2022-2023学年中考数学最后冲刺浓缩精华卷含解析.doc》由会员分享,可在线阅读,更多相关《北京市怀柔区达标名校2022-2023学年中考数学最后冲刺浓缩精华卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1下列说法正确的是( )A对角线相等且互相垂直的四边形是菱形B对角线互相平分的四边形是正方形C对角线互相垂直的四边形是平行四边形D对角线相等且互相平分的四边形是矩形2如图,正比例函数的图像与反比例函数的图象相交于A、B两点,其中点A的横坐标为2,当时,x的取值范围是( )Ax-2或x2Bx-2或0x2C-2x0或0x2D-2x0或x23已知A样本的数据如下:72,73,76,76,77,78,78,78,B样本的数据恰好是A样本数据每个都加2,则A,B两个样本的下列统计量对应相同的是( )A平均数B标准差C中位数D众数4如图,能判定
3、EBAC的条件是( )AC=ABEBA=EBDCA=ABEDC=ABC5如图是由5个相同的正方体搭成的几何体,其左视图是( )ABCD6下列事件中是必然事件的是()A早晨的太阳一定从东方升起B中秋节的晚上一定能看到月亮C打开电视机,正在播少儿节目D小红今年14岁,她一定是初中学生7函数yax2与yax+b的图象可能是()ABCD8如图,函数y=的图象记为c1,它与x轴交于点O和点A1;将c1绕点A1旋转180得c2,交x轴于点A2;将c2绕点A2旋转180得c3,交x轴于点A3如此进行下去,若点P(103,m)在图象上,那么m的值是()A2B2C3D49如图,为了测量河对岸l1上两棵古树A、B
4、之间的距离,某数学兴趣小组在河这边沿着与AB平行的直线l2上取C、D两点,测得ACB15,ACD45,若l1、l2之间的距离为50m,则A、B之间的距离为()A50mB25mC(50)mD(5025)m10的相反数是()ABCD二、填空题(共7小题,每小题3分,满分21分)11如图,RtABC的直角边BC在x轴上,直线y=x经过直角顶点B,且平分ABC的面积,BC=3,点A在反比例函数y=图象上,则k=_12科学家发现,距离地球2540000光年之遥的仙女星系正在向银河系靠近其中2540000用科学记数法表示为_13阅读以下作图过程:第一步:在数轴上,点O表示数0,点A表示数1,点B表示数5,
5、以AB为直径作半圆(如图);第二步:以B点为圆心,1为半径作弧交半圆于点C(如图);第三步:以A点为圆心,AC为半径作弧交数轴的正半轴于点M请你在下面的数轴中完成第三步的画图(保留作图痕迹,不写画法),并写出点M表示的数为_14如图,AB是O的直径,点C在O上,AE是O的切线,A为切点,连接BC并延长交AE于点D若AOC=80,则ADB的度数为( )A40 B50 C60 D2015如图所示的网格是正方形网格,点P到射线OA的距离为m,点P到射线OB的距离为n,则m _ n(填“”,“=”或“”)16如图,点A在双曲线上,ABx轴于B,且AOB的面积SAOB=2,则k=_17不等式组的最大整数
6、解为_三、解答题(共7小题,满分69分)18(10分)如图,在平面直角坐标系中,函数的图象经过点,直线与x轴交于点求的值;过第二象限的点作平行于x轴的直线,交直线于点C,交函数的图象于点D当时,判断线段PD与PC的数量关系,并说明理由;若,结合函数的图象,直接写出n的取值范围19(5分)如图,沿AC方向开山修路为了加快施工进度,要在小山的另一边同时施工,从AC上的一点B取ABD=120,BD=520m,D=30那么另一边开挖点E离D多远正好使A,C,E三点在一直线上(取1.732,结果取整数)?20(8分)已知:如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AGD
7、B交CB的延长线于G求证:ADECBF;若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论21(10分)如图,AD是ABC的中线,AD12,AB13,BC10,求AC长22(10分)某中学为了解学生平均每天“诵读经典”的时间,在全校范围内随机抽查了部分学生进行调查统计(设每天的诵读时间为分钟),将调查统计的结果分为四个等级:级、级、级、级将收集的数据绘制成如下两幅不完整的统计图请根据图中提供的信息,解答下列问题:()请补全上面的条形图()所抽查学生“诵读经典”时间的中位数落在_级()如果该校共有名学生,请你估计该校平均每天“诵读经典”的时间不低于分钟的学生约有多少人?23
8、(12分)如图,直线y2x6与反比例函数y(k0)的图像交于点A(1,m),与x轴交于点B,平行于x轴的直线yn(0n6)交反比例函数的图像于点M,交AB于点N,连接BM.求m的值和反比例函数的表达式;直线yn沿y轴方向平移,当n为何值时,BMN的面积最大?24(14分)如图,抛物线yax2+bx+c(a0)的顶点为M,直线ym与抛物线交于点A,B,若AMB为等腰直角三角形,我们把抛物线上A,B两点之间的部分与线段AB 围成的图形称为该抛物线对应的准蝶形,线段AB称为碟宽,顶点M 称为碟顶(1)由定义知,取AB中点N,连结MN,MN与AB的关系是_(2)抛物线y对应的准蝶形必经过B(m,m),
9、则m_,对应的碟宽AB是_(3)抛物线yax24a(a0)对应的碟宽在x 轴上,且AB1求抛物线的解析式;在此抛物线的对称轴上是否有这样的点P(xp,yp),使得APB为锐角,若有,请求出yp的取值范围若没有,请说明理由参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】分析:根据菱形,正方形,平行四边形,矩形的判定定理,进行判定,即可解答.详解:A、对角线互相平分且垂直的四边形是菱形,故错误;B、四条边相等的四边形是菱形,故错误;C、对角线相互平分的四边形是平行四边形,故错误;D、对角线相等且相互平分的四边形是矩形,正确;故选D点睛:本题考查了菱形,正方形,平行
10、四边形,矩形的判定定理,解决本题的关键是熟记四边形的判定定理2、D【解析】先根据反比例函数与正比例函数的性质求出B点坐标,再由函数图象即可得出结论【详解】解:反比例函数与正比例函数的图象均关于原点对称,A、B两点关于原点对称,点A的横坐标为1,点B的横坐标为-1,由函数图象可知,当-1x0或x1时函数y1=k1x的图象在的上方,当y1y1时,x的取值范围是-1x0或x1故选:D【点睛】本题考查的是反比例函数与一次函数的交点问题,能根据数形结合求出y1y1时x的取值范围是解答此题的关键3、B【解析】试题分析:根据样本A,B中数据之间的关系,结合众数,平均数,中位数和标准差的定义即可得到结论:设样
11、本A中的数据为xi,则样本B中的数据为yi=xi+2,则样本数据B中的众数和平均数以及中位数和A中的众数,平均数,中位数相差2,只有标准差没有发生变化.故选B.考点:统计量的选择4、C【解析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线【详解】A、C=ABE不能判断出EBAC,故本选项错误; B、A=EBD不能判断出EBAC,故本选项错误;C、A=ABE,根据内错角相等,两直线平行,可以得出EBAC,故本选项正确; D、C=ABC只能判断出AB=AC,不能判断出EBAC,故本选项错误故选C【点睛】本题考查了平行线的判定
12、,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行5、A【解析】根据三视图的定义即可判断【详解】根据立体图可知该左视图是底层有2个小正方形,第二层左边有1个小正方形故选A【点睛】本题考查三视图,解题的关键是根据立体图的形状作出三视图,本题属于基础题型6、A【解析】必然事件就是一定发生的事件,即发生的概率是1的事件,依据定义即可求解【详解】解:B、C、D选项为不确定事件,即随机事件故错误;一定发生的事件只有第一个答案,早晨的太阳一定从东方升起故选A【点睛】该题考查的是对必然事件的概念的理解;必然事件就是一定发生的事
13、件7、B【解析】选项中,由图可知:在,;在,所以A错误;选项中,由图可知:在,;在,所以B正确;选项中,由图可知:在,;在,所以C错误;选项中,由图可知:在,;在,所以D错误故选B点睛:在函数与中,相同的系数是“”,因此只需根据“抛物线”的开口方向和“直线”的变化趋势确定出两个解析式中“”的符号,看两者的符号是否一致即可判断它们在同一坐标系中的图象情况,而这与“b”的取值无关.8、C【解析】求出与x轴的交点坐标,观察图形可知第奇数号抛物线都在x轴上方,然后求出到抛物线平移的距离,再根据向右平移横坐标加表示出抛物线的解析式,然后把点P的坐标代入计算即可得解【详解】令,则=0,解得,由图可知,抛物
14、线在x轴下方,相当于抛物线向右平移4(261)=100个单位得到得到,再将绕点旋转180得,此时的解析式为y=(x100)(x1004)=(x100)(x104), 在第26段抛物线上,m=(103100)(103104)=3.故答案是:C.【点睛】本题考查的知识点是二次函数图象与几何变换,解题关键是根据题意得到p点所在函数表达式.9、C【解析】如图,过点A作AMDC于点M,过点B作BNDC于点N则AM=BN通过解直角ACM和BCN分别求得CM、CN的长度,则易得AB =MN=CMCN,即可得到结论【详解】如图,过点A作AMDC于点M,过点B作BNDC于点N则AB=MN,AM=BN在直角ACM
15、中,ACM=45,AM=50m,CM=AM=50m在直角BCN中,BCN=ACB+ACD=60,BN=50m,CN=(m),MN=CMCN=50(m)则AB=MN=(50)m故选C【点睛】本题考查了解直角三角形的应用解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题10、B【解析】一个数的相反数就是在这个数前面添上“”号,由此即可求解【详解】解:的相反数是故选:B【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“”号:一个正数的相反数是负数,一个负数的相反数是正数,1的相反数是1二、填空题(共7小题,每小题3分,满分21分)11、1【解析】分析:根
16、据题意得出点B的坐标,根据面积平分得出点D的坐标,利用三角形相似可得点A的坐标,从而求出k的值详解:根据一次函数可得:点B的坐标为(1,0), BD平分ABC的面积,BC=3点D的横坐标1.5, 点D的坐标为, DE:AB=1:1, 点A的坐标为(1,1), k=11=1点睛:本题主要考查的是反比例函数的性质以及三角形相似的应用,属于中等难度的题型得出点D的坐标是解决这个问题的关键12、2.541【解析】【分析】科学记数法的表示形式为a10n的形式,其中1|a|1时,n是正数;当原数的绝对值1时,n是负数【详解】2540000的小数点向左移动6位得到2.54,所以,2540000用科学记数法可
17、表示为:2.541,故答案为2.541【点睛】本题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|【解析】由图像可知在射线上有一个特殊点,点到射线的距离,点到射线的距离,于是可知 ,利用锐角三角函数 ,即可判断出【详解】由题意可知:找到特殊点,如图所示:设点到射线的距离 ,点到射线的距离 由图可知, , , 【点睛】本题考查了点到线的距离,熟知在直角三角形中利用三角函数来解角和边的关系是解题关键.16、4【解析】:由反比例函数解析式可知:系数,SAOB=2即,;又由双曲线在二、四象限k0,k=-417、1【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小
18、、大小小大中间找、大大小小无解了确定不等式组的解集,从而得出其最大整数解【详解】,解不等式得:x1,解不等式得x-11x,x-1x1,-x1,x-1,不等式组的解集为x-1,不等式组的最大整数解为-1.故答案为-1.【点睛】本题考查了一元一次不等式组的整数解,解题的关键是熟练的掌握一元一次不等式组的整数解.三、解答题(共7小题,满分69分)18、(1)(2)判断:理由见解析;或【解析】(1)利用代点法可以求出参数 ;(2)当时,即点P的坐标为,即可求出点的坐标,于是得出;根据中的情况,可知或再结合图像可以确定的取值范围;【详解】解:(1)函数的图象经过点,将点代入,即 ,得: 直线与轴交于点,
19、将点代入,即 ,得: (2)判断: 理由如下:当时,点P的坐标为,如图所示:点C的坐标为 ,点D的坐标为 , 由可知当时所以由图像可知,当直线往下平移的时也符合题意,即 ,得;当时,点P的坐标为点C的坐标为 ,点D的坐标为 ,当 时,即,也符合题意,所以 的取值范围为:或 【点睛】本题主要考查了反比例函数和一次函数,熟练求反比例函数和一次函数解析式的方法、坐标与线段长度的转化和数形结合思想是解题关键.19、450m.【解析】若要使A、C、E三点共线,则三角形BDE是以E为直角的三角形,利用三角函数即可解得DE的长【详解】解:,在中,答:另一边开挖点离,正好使,三点在一直线上【点睛】本题考查的知
20、识点是解直角三角形的应用和勾股定理的运用,解题关键是是熟记含30的直角三角形的性质.20、(1)证明见解析(2)当四边形BEDF是菱形时,四边形AGBD是矩形;证明见解析;【解析】(1)在证明全等时常根据已知条件,分析还缺什么条件,然后用(SAS,ASA,SSS)来证明全等;(2)先由菱形的性质得出AE=BE=DE,再通过角之间的关系求出2+3=90即ADB=90,所以判定四边形AGBD是矩形【详解】解:证明:四边形是平行四边形,点、分别是、的中点,在和中,解:当四边形是菱形时,四边形是矩形证明:四边形是平行四边形,四边形是平行四边形四边形是菱形,即四边形是矩形【点睛】本题主要考查了平行四边形
21、的基本性质和矩形的判定及全等三角形的判定平行四边形基本性质:平行四边形两组对边分别平行;平行四边形的两组对边分别相等;平行四边形的两组对角分别相等;平行四边形的对角线互相平分三角形全等的判定条件:SSS,SAS,AAS,ASA21、2.【解析】根据勾股定理逆定理,证ABD是直角三角形,得ADBC,可证AD垂直平分BC,所以AB=AC.【详解】解:AD是ABC的中线,且BC=10,BD=BC=112+122=22,即BD2+AD2=AB2,ABD是直角三角形,则ADBC,又CD=BD,AC=AB=2【点睛】本题考核知识点:勾股定理、全等三角形、垂直平分线.解题关键点:熟记相关性质,证线段相等.2
22、2、)补全的条形图见解析()级()【解析】试题分析:(1)根据级的人数和所占的百分比即可求出总数,从而求出三级人数,进而补全图形;(2)把所有同类数据按照从小到大的顺序排列,中间的数据是中位数,则该数在级;(3)由样本估计总体,由于时间不低于的人数占,故该类学生约有408人试题解析: (1)本次随机抽查的人数为:2040%=50(人)三级人数为:50-13-20-7=10.补图如下:(2)把所有同类数据按照从小到大的顺序排列,中间的数据是中位数,则该数在级(3)由样本估计总体,由于时间不低于的人数占,所以该类学生约有23、(1)m8,反比例函数的表达式为y;(2)当n3时,BMN的面积最大【解
23、析】(1)求出点A的坐标,利用待定系数法即可解决问题;(2)构造二次函数,利用二次函数的性质即可解决问题.【详解】解:(1)直线y=2x+6经过点A(1,m),m=21+6=8,A(1,8),反比例函数经过点A(1,8),8=,k=8,反比例函数的解析式为y=(2)由题意,点M,N的坐标为M(,n),N(,n),0n6,0,SBMN=(|+|)n=(+)n=(n3)2+,n=3时,BMN的面积最大24、(1)MN与AB的关系是:MNAB,MNAB,(2)2,4;(2)yx22;在此抛物线的对称轴上有这样的点P,使得APB 为锐角,yp的取值范围是yp2或yp2【解析】(1)直接利用等腰直角三角
24、形的性质分析得出答案;(2)利用已知点为B(m,m),代入抛物线解析式进而得出m的值,即可得出AB的值;(2)根据题意得出抛物线必过(2,0),进而代入求出答案;根据yx22的对称轴上P(0,2),P(0,2)时,APB 为直角,进而得出答案【详解】(1)MN与AB的关系是:MNAB,MNAB,如图1,AMB是等腰直角三角形,且N为AB的中点,MNAB,MNAB,故答案为MNAB,MNAB;(2)抛物线y对应的准蝶形必经过B(m,m),mm2,解得:m2或m0(不合题意舍去),当m2则,2x2,解得:x2,则AB2+24;故答案为2,4;(2)由已知,抛物线对称轴为:y轴,抛物线yax24a(a0)对应的碟宽在x 轴上,且AB1抛物线必过(2,0),代入yax24a(a0),得,9a4a0,解得:a,抛物线的解析式是:yx22;由知,如图2,yx22的对称轴上P(0,2),P(0,2)时,APB 为直角,在此抛物线的对称轴上有这样的点P,使得APB 为锐角,yp的取值范围是yp2或yp2【点睛】此题主要考查了二次函数综合以及等腰直角三角形的性质,正确应用等腰直角三角形的性质是解题关键