四川省达州市大竹县2022-2023学年初中数学毕业考试模拟冲刺卷含解析.doc

上传人:lil****205 文档编号:87997701 上传时间:2023-04-19 格式:DOC 页数:17 大小:979.50KB
返回 下载 相关 举报
四川省达州市大竹县2022-2023学年初中数学毕业考试模拟冲刺卷含解析.doc_第1页
第1页 / 共17页
四川省达州市大竹县2022-2023学年初中数学毕业考试模拟冲刺卷含解析.doc_第2页
第2页 / 共17页
点击查看更多>>
资源描述

《四川省达州市大竹县2022-2023学年初中数学毕业考试模拟冲刺卷含解析.doc》由会员分享,可在线阅读,更多相关《四川省达州市大竹县2022-2023学年初中数学毕业考试模拟冲刺卷含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回

2、。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图所示,结论:;,其中正确的是有( )A1个B2个C3个D4个2我们从不同的方向观察同一物体时,可能看到不同的图形,则从正面、左面、上面观察都不可能看到矩形的是()ABCD3某公园里鲜花的摆放如图所示,第个图形中有3盆鲜花,第个图形中有6盆鲜花,第个图形中有11盆鲜花,按此规律,则第个图形中的鲜花盆数为()A37B38C50D514如图,矩形中,以为圆心,为半径画弧,交于点,以为圆心,为半径画弧,交于点,则的长为( )A3B4CD55目前,世界上能制造出的最小晶体管的长度只有0.000 000 04m,将0.000 000 04

3、用科学记数法表示为()A0.4108B4108C4108D41086抛物线y=ax24ax+4a1与x轴交于A,B两点,C(x1,m)和D(x2,n)也是抛物线上的点,且x12x2,x1+x24,则下列判断正确的是()AmnBmnCmnDmn7已知抛物线yx2+(2a+1)x+a2a,则抛物线的顶点不可能在()A第一象限B第二象限C第三象限D第四象限8如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则供选择的地址有()A1处B2处C3处D4处9如图,将ABC绕点B顺时针旋转60得DBE,点C的对应点E恰好落在AB延长线上,连接AD下列结论一定

4、正确的是()AABDEBCBECCADBCDADBC10如图,已知E,F分别为正方形ABCD的边AB,BC的中点,AF与DE交于点M,O为BD的中点,则下列结论:AME=90;BAF=EDB;BMO=90;MD=2AM=4EM;其中正确结论的是( )ABCD二、填空题(共7小题,每小题3分,满分21分)11抛物线 y3x26x+a 与 x 轴只有一个公共点,则 a 的值为_12已知一纸箱中,装有5个只有颜色不同的球,其中2个白球,3个红球,若往原纸箱中再放入x个白球,然后从箱中随机取出一个白球的概率是,则x的值为_13若一次函数y=-2x+b(b为常数)的图象经过第二、三、四象限,则b的值可以

5、是_.(写出一个即可)14如图为二次函数图象的一部分,其对称轴为直线.若其与x轴一交点为A(3,0)则由图象可知,不等式的解集是_.15如果抛物线y(k2)x2+k的开口向上,那么k的取值范围是_16如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),按这样的运动规律,经过第2019次运动后,动点P的坐标是_17百子回归图是由 1,2,3,100 无重复排列而成的正方形数表,它是一部数化的澳门简史,如:中央四 位“19 99 12 20”标示澳门回归日期,最后一行中间两 位“23 50”标示澳门面积,

6、同时它也是十阶幻方, 其每行 10 个数之和、每列 10 个数之和、每条对角线10 个数之和均相等,则这个和为_百 子 回 归三、解答题(共7小题,满分69分)18(10分)某花卉基地种植了郁金香和玫瑰两种花卉共 30 亩,有关数据如表:成本(单位:万元/亩)销售额(单位:万元/亩)郁金香2.43玫瑰22.5(1)设种植郁金香 x 亩,两种花卉总收益为 y 万元,求 y 关于 x 的函数关系式(收益=销售额成本)(2) 若计划投入的成本的总额不超过 70 万元,要使获得的收益最大,基地应种植郁金香和玫瑰个多少亩?19(5分)已知:ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3

7、,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度)(1)画出ABC向下平移4个单位长度得到的A1B1C1,点C1的坐标是 ;(2)以点B为位似中心,在网格内画出A2B2C2,使A2B2C2与ABC位似,且位似比为2:1,点C2的坐标是 ;(3)A2B2C2的面积是 平方单位20(8分)计算:(2016)0+|3|4cos4521(10分)小新家、小华家和书店依次在东风大街同一侧(忽略三者与东风大街的距离)小新小华两人同时各自从家出发沿东风大街匀速步行到书店买书,已知小新到达书店用了20分钟,小华的步行速度是40米/分,设小新、小华离小华家的距离分别为y1(米)、y2(米),两

8、人离家后步行的时间为x(分),y1与x的函数图象如图所示,根据图象解决下列问题:(1)小新的速度为_米/分,a=_;并在图中画出y2与x的函数图象(2)求小新路过小华家后,y1与x之间的函数关系式(3)直接写出两人离小华家的距离相等时x的值22(10分)如图,在ABC中,C=90,BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC、AB于点E. F试判断直线BC与O的位置关系,并说明理由;若BD=2,BF=2,求O的半径23(12分)如图,在平面直角坐标系xOy中,直线与双曲线(x0)交于点求a,k的值;已知直线过点且平行于直线,点P(m,n)(m3

9、)是直线上一动点,过点P分别作轴、轴的平行线,交双曲线(x0)于点、,双曲线在点M、N之间的部分与线段PM、PN所围成的区域(不含边界)记为横、纵坐标都是整数的点叫做整点当时,直接写出区域内的整点个数;若区域内的整点个数不超过8个,结合图象,求m的取值范围24(14分)如图,MN是一条东西方向的海岸线,在海岸线上的A处测得一海岛在南偏西32的方向上,向东走过780米后到达B处,测得海岛在南偏西37的方向,求小岛到海岸线的距离(参考数据:tan37=cot530.755,cot37=tan531.327,tan32=cot580.625,cot32=tan581.1)参考答案一、选择题(每小题只

10、有一个正确答案,每小题3分,满分30分)1、C【解析】根据已知的条件,可由AAS判定AEBAFC,进而可根据全等三角形得出的结论来判断各选项是否正确【详解】解:如图:在AEB和AFC中,有,AEBAFC;(AAS)FAM=EAN,EAN-MAN=FAM-MAN,即EAM=FAN;(故正确)又E=F=90,AE=AF,EAMFAN;(ASA)EM=FN;(故正确)由AEBAFC知:B=C,AC=AB;又CAB=BAC,ACNABM;(故正确)由于条件不足,无法证得CD=DN;故正确的结论有:;故选C【点睛】此题主要考查的是全等三角形的判定和性质,做题时要从最容易,最简单的开始,由易到难2、C【解

11、析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形依此找到从正面、左面、上面观察都不可能看到矩形的图形【详解】A、主视图为长方形,左视图为长方形,俯视图为圆,故本选项错误;B、主视图为长方形,左视图为长方形,俯视图为长方形,故本选项错误;C、主视图为等腰梯形,左视图为等腰梯形,俯视图为圆环,从正面、左面、上面观察都不可能看到长方形,故本选项正确;D、主视图为三角形,左视图为三角形,俯视图为有对角线的矩形,故本选项错误故选C【点睛】本题重点考查了三视图的定义考查学生的空间想象能力,关键是根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形解答3、D【解析】试

12、题解析:第个图形中有 盆鲜花,第个图形中有盆鲜花,第个图形中有盆鲜花,第n个图形中的鲜花盆数为则第个图形中的鲜花盆数为故选C.4、B【解析】连接DF,在中,利用勾股定理求出CF的长度,则EF的长度可求【详解】连接DF,四边形ABCD是矩形 在中, 故选:B【点睛】本题主要考查勾股定理,掌握勾股定理的内容是解题的关键5、C【解析】科学记数法的表示形式为a10 的形式,其中1a|1时,n是正数;当原数的绝对值1时,n是负数.【详解】0.000 000 04=410,故选C【点睛】此题考查科学记数法,难度不大6、C【解析】分析:将一般式配方成顶点式,得出对称轴方程根据抛物线与x轴交于两点,得出求得距

13、离对称轴越远,函数的值越大,根据判断出它们与对称轴之间的关系即可判定.详解: 此抛物线对称轴为 抛物线与x轴交于两点,当时,得 故选C点睛:考查二次函数的图象以及性质,开口向上,距离对称轴越远的点,对应的函数值越大,7、D【解析】求得顶点坐标,得出顶点的横坐标和纵坐标的关系式,即可求得【详解】抛物线yx2+(2a+1)x+a2a的顶点的横坐标为:xa,纵坐标为:y2a,抛物线的顶点横坐标和纵坐标的关系式为:y2x+,抛物线的顶点经过一二三象限,不经过第四象限,故选:D【点睛】本题考查了二次函数的性质,得到顶点的横纵坐标的关系式是解题的关键8、D【解析】到三条相互交叉的公路距离相等的地点应是三条

14、角平分线的交点把三条公路的中心部位看作三角形,那么这个三角形两个内角平分线的交点以及三个外角两两平分线的交点都满足要求【详解】满足条件的有:(1)三角形两个内角平分线的交点,共一处;(2)三个外角两两平分线的交点,共三处如图所示,故选D【点睛】本题考查了角平分线的性质;这是一道生活联系实际的问题,解答此类题目时最直接的判断就是三角形的角平分线,很容易漏掉外角平分线,解答时一定要注意,不要漏解9、C【解析】根据旋转的性质得,ABDCBE=60, EC, 则ABD为等边三角形,即 ADAB=BD,得ADB=60因为ABDCBE=60,则CBD=60,所以,ADB=CBD,得ADBC.故选C.10、

15、D【解析】根据正方形的性质可得AB=BC=AD,ABC=BAD=90,再根据中点定义求出AE=BF,然后利用“边角边”证明ABF和DAE全等,根据全等三角形对应角相等可得BAF=ADE,然后求出ADE+DAF=BAD=90,从而求出AMD=90,再根据邻补角的定义可得AME=90,从而判断正确;根据中线的定义判断出ADEEDB,然后求出BAFEDB,判断出错误;根据直角三角形的性质判断出AED、MAD、MEA三个三角形相似,利用相似三角形对应边成比例可得,然后求出MD=2AM=4EM,判断出正确,设正方形ABCD的边长为2a,利用勾股定理列式求出AF,再根据相似三角形对应边成比例求出AM,然后

16、求出MF,消掉a即可得到AM=MF,判断出正确;过点M作MNAB于N,求出MN、NB,然后利用勾股定理列式求出BM,过点M作GHAB,过点O作OKGH于K,然后求出OK、MK,再利用勾股定理列式求出MO,根据正方形的性质求出BO,然后利用勾股定理逆定理判断出BMO=90,从而判断出正确【详解】在正方形ABCD中,AB=BC=AD,ABC=BAD=90,E、F分别为边AB,BC的中点,AE=BF=BC,在ABF和DAE中, ,ABFDAE(SAS),BAF=ADE,BAF+DAF=BAD=90,ADE+DAF=BAD=90,AMD=180-(ADE+DAF)=180-90=90,AME=180-

17、AMD=180-90=90,故正确;DE是ABD的中线,ADEEDB,BAFEDB,故错误;BAD=90,AMDE,AEDMADMEA,AM=2EM,MD=2AM,MD=2AM=4EM,故正确;设正方形ABCD的边长为2a,则BF=a,在RtABF中,AF= BAF=MAE,ABC=AME=90,AMEABF, ,即,解得AM= MF=AF-AM=,AM=MF,故正确;如图,过点M作MNAB于N,则 即 解得MN=,AN=,NB=AB-AN=2a-=,根据勾股定理,BM=过点M作GHAB,过点O作OKGH于K,则OK=a-=,MK=-a=,在RtMKO中,MO=根据正方形的性质,BO=2a,B

18、M2+MO2= BM2+MO2=BO2,BMO是直角三角形,BMO=90,故正确;综上所述,正确的结论有共4个故选:D【点睛】本题考查了正方形的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理的应用,勾股定理逆定理的应用,综合性较强,难度较大,仔细分析图形并作出辅助线构造出直角三角形与相似三角形是解题的关键二、填空题(共7小题,每小题3分,满分21分)11、3【解析】根据抛物线与x轴只有一个公共交点,则判别式等于0,据此即可求解【详解】抛物线y=3x26x+a与x轴只有一个公共点,判别式=36-12a=0,解得:a=3,故答案为3【点睛】本题考查了二次函数图象与x轴的公共点的个数

19、的判定方法,如果0,则抛物线与x轴有两个不同的交点;如果=0,与x轴有一个交点;如果0,与x轴无交点.12、1【解析】先根据概率公式得到,解得.【详解】根据题意得,解得.故答案为:.【点睛】本题考查了概率公式:随机事件的概率事件可能出现的结果数除以所有可能出现的结果数.13、-1【解析】试题分析:根据一次函数的图象经过第二、三、四象限,可以得出k1,b1,随便写出一个小于1的b值即可一次函数y=2x+b(b为常数)的图象经过第二、三、四象限, k1,b1考点:一次函数图象与系数的关系14、1x1【解析】试题分析:由图象得:对称轴是x=1,其中一个点的坐标为(1,0)图象与x轴的另一个交点坐标为

20、(-1,0)利用图象可知:ax2+bx+c0的解集即是y0的解集,-1x1考点:二次函数与不等式(组)15、k2【解析】根据二次函数的性质可知,当抛物线开口向上时,二次项系数k21【详解】因为抛物线y(k2)x2k的开口向上,所以k21,即k2,故答案为k2.【点睛】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型16、(2019,2)【解析】分析点P的运动规律,找到循环次数即可【详解】分析图象可以发现,点P的运动每4次位置循环一次每循环一次向右移动四个单位2019=4504+3当第504循环结束时,点P位置在(2016,0),在此基础之上运动三次到(2019,2)

21、故答案为(2019,2).【点睛】本题是规律探究题,解题关键是找到动点运动过程中,每运动多少次形成一个循环17、505【解析】根据已知得:百子回归图是由1,2,3,100无重复排列而成,先计算总和;又因为一共有10行,且每行10个数之和均相等,所以每行10个数之和=总和10,代入求解即可【详解】1100的总和为: =5050,一共有10行,且每行10个数之和均相等,所以每行10个数之和为:n=505010=505,故答案为505.【点睛】本题是数字变化类的规律题,是常考题型;一般思路为:按所描述的规律从1开始计算,从计算的过程中慢慢发现规律,总结出与每一次计算都符合的规律,就是最后的答案三、解

22、答题(共7小题,满分69分)18、(1)y = 0.1x + 15,(2)郁金香 25 亩,玫瑰 5 亩【解析】(1)根据题意和表格中的数据可得到y关于x的函数;(2)根据题意可列出相应的不等式,再根据(1)中的函数关系式即可求解.【详解】(1)由题意得y=(3-2.4)x-(2.5-2)(30-x)=0.1x+15即y关于x的函数关系式为y=0.1x+15(2)由题意得2.4x+2(30-x)70解得x25,y=0.1x+15当x=25时,y最大=17.530-x=5,要使获得的收益最大,基地应种植郁金香25亩和玫瑰5亩.【点睛】此题主要考查一次函数的应用,解题的关键是根据题意进行列出关系式

23、与不等式进行求解.19、(1)(2,2);(2)(1,0);(3)1【解析】试题分析:(1)根据平移的性质得出平移后的图从而得到点的坐标;(2)根据位似图形的性质得出对应点位置,从而得到点的坐标;(3)利用等腰直角三角形的性质得出A2B2C2的面积试题解析:(1)如图所示:C1(2,2);故答案为(2,2);(2)如图所示:C2(1,0);故答案为(1,0);(3)=20,=20,=40,A2B2C2是等腰直角三角形,A2B2C2的面积是:=1平方单位故答案为1考点:1、平移变换;2、位似变换;3、勾股定理的逆定理20、1【解析】根据二次根式性质,零指数幂法则,绝对值的代数意义,以及特殊角的三

24、角函数值依次计算后合并即可【详解】解:原式=11+34=1【点睛】本题考查实数的运算及特殊角三角形函数值21、(1)60;960;图见解析;(2)y1=60x240(4x20);(3)两人离小华家的距离相等时,x的值为2.4或12.【解析】(1)先根据小新到小华家的时间和距离即可求得小新的速度和小华家离书店的距离,然后根据小华的速度即可画出y2与x的函数图象;(2)设所求函数关系式为y1=kx+b,由图可知函数图像过点(4,0),(20,960),则将两点坐标代入求解即可得到函数关系式;(3)分小新还没到小华家和小新过了小华家两种情况,然后分别求出x的值即可.【详解】(1)由图可知,小新离小华

25、家240米,用4分钟到达,则速度为2404=60米/分,小新按此速度再走16分钟到达书店,则a=1660=960米,小华到书店的时间为96040=24分钟,则y2与x的函数图象为:故小新的速度为60米/分,a=960;(2)当4x20时,设所求函数关系式为y1=kx+b(k0),将点(4,0),(20,960)代入得:,解得:,y1=60x240(4x20时)(3)由图可知,小新到小华家之前的函数关系式为:y=2406x,当两人分别在小华家两侧时,若两人到小华家距离相同,则2406x=40x,解得:x=2.4;当小新经过小华家并追上小华时,两人到小华家距离相同,则60x240=40x,解得:x

26、=12;故两人离小华家的距离相等时,x的值为2.4或12.22、(1)相切,理由见解析;(1)1【解析】(1)求出OD/AC,得到ODBC,根据切线的判定得出即可;(1)根据勾股定理得出方程,求出方程的解即可【详解】(1)直线BC与O的位置关系是相切,理由是:连接OD,OA=OD,OAD=ODA,AD平分CAB,OAD=CAD,ODA=CAD,ODAC,C=90,ODB=90,即ODBC,OD为半径,直线BC与O的位置关系是相切;(1)设O的半径为R,则OD=OF=R,在RtBDO中,由勾股定理得:OB=BD+OD,即(R+1) =(1)+R,解得:R=1,即O的半径是1.【点睛】此题考查切线

27、的判定,勾股定理,解题关键在于求出ODBC.23、(1),;(2) 3, .【解析】(1)将代入可求出a,将A点坐标代入可求出k;(2)根据题意画出函数图像,可直接写出区域内的整点个数;求出直线的表达式为,根据图像可得到两种极限情况,求出对应的m的取值范围即可.【详解】解:(1)将代入得a=4将代入,得(2)区域内的整点个数是3直线是过点且平行于直线直线的表达式为当时,即线段PM上有整点 【点睛】本题考查了待定系数法求函数解析式以及函数图像的交点问题,正确理解整点的定义并画出函数图像,运用数形结合的思想是解题关键.24、10【解析】试题分析:如图:过点C作CDAB于点D,在RtACD中,利用A

28、CD的正切可得AD=0.625CD,同样在RtBCD中,可得BD= 0.755CD,再根据AB=BD-CD=780,代入进行求解即可得.试题解析:如图:过点C作CDAB于点D,由已知可得:ACD=32,BCD =37,在RtACD中,ADC=90,AD=CDtanACD=CDtan32=0.625CD,在RtBCD中,BDC=90,BD=CDtanBCD=CDtan37=0.755CD,AB=BD-CD=780,0.755CD-0.625CD=780,CD=10,答:小岛到海岸线的距离是10米.【点睛】本题考查了解直角三角形的应用,正确添加辅助线构造直角三角形、根据图形灵活选用三角函数进行求解是关键.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁