《四川省简阳中学2023年中考数学模拟精编试卷含解析.doc》由会员分享,可在线阅读,更多相关《四川省简阳中学2023年中考数学模拟精编试卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,在ABC中,B90,AB3cm,BC6cm,动点P从点A开始沿AB向点B以1cm/s的速度移动,动点Q从点B开始沿BC向点C以2cm/s的速度移动,若P,Q两
2、点分别从A,B两点同时出发,P点到达B点运动停止,则PBQ的面积S随出发时间t的函数关系图象大致是()ABCD2已知二次函数y=ax2+bx+c的图像经过点(0,m)、(4、m)、(1,n),若nm,则( )Aa0且4a+b=0Ba0且4a+b=0Ca0且2a+b=0Da0且2a+b=03下图是某几何体的三视图,则这个几何体是( )A棱柱B圆柱C棱锥D圆锥4已知抛物线yx2+3向左平移2个单位,那么平移后的抛物线表达式是()Ay(x+2)2+3 By(x2)2+3 Cyx2+1 Dyx2+55下列各数中,无理数是()A0BCD6如图,在ABCD中,AB=6,AD=9,BAD的平分线交BC于点E
3、,交DC的延长线于点F,BGAE,垂足为G,若BG=,则CEF的面积是()ABCD7如图,菱形中,对角线AC、BD交于点O,E为AD边中点,菱形ABCD的周长为28,则OE的长等于( )A3.5B4C7D148如图,在平面直角坐标系中,是反比例函数的图像上一点,过点做轴于点,若的面积为2,则的值是( )A-2B2C-4D49已知某校女子田径队23人年龄的平均数和中位数都是13岁,但是后来发现其中一位同学的年龄登记错误,将14岁写成15岁,经重新计算后,正确的平均数为a岁,中位数为b岁,则下列结论中正确的是()Aa13,b=13 Ba13,b13 Ca13,b13 Da13,b=1310关于反比
4、例函数y=,下列说法中错误的是()A它的图象是双曲线B它的图象在第一、三象限Cy的值随x的值增大而减小D若点(a,b)在它的图象上,则点(b,a)也在它的图象上二、填空题(共7小题,每小题3分,满分21分)11如图,在平面直角坐标系中,函数y=(x0)的图象经过矩形OABC的边AB、BC的中点E、F,则四边形OEBF的面积为_12如图,矩形ABCD,AB=2,BC=1,将矩形ABCD绕点A顺时针旋转90得矩形AEFG,连接CG、EG,则CGE=_13如图,在平面直角坐标系中,以坐标原点O为位似中心在y轴的左侧将OAB缩小得到OAB,若OAB与OAB的相似比为2:1,则点B(3,2)的对应点B的
5、坐标为_14对于实数a,b,定义运算“*”:a*b=,例如:因为42,所以4*2=4242=8,则(3)*(2)=_.15如图,如果两个相似多边形任意一组对应顶点P、P所在的直线都是经过同一点O,且有OP=kOP(k0),那么我们把这样的两个多边形叫位似多边形,点O叫做位似中心,已知ABC与ABC是关于点O的位似三角形,OA=3OA,则ABC与ABC的周长之比是_.16用一个半径为10cm半圆纸片围成一个圆锥的侧面(接缝忽略不计),则该圆锥的高为 17一个n边形的内角和为1080,则n=_.三、解答题(共7小题,满分69分)18(10分)如图,在菱形ABCD中,E、F分别为AD和CD上的点,且
6、AE=CF,连接AF、CE交于点G,求证:点G在BD上19(5分)如图,ABC内接于O,且AB为O的直径,ODAB,与AC交于点E,与过点C的O的切线交于点D若AC=4,BC=2,求OE的长试判断A与CDE的数量关系,并说明理由20(8分) (1)解方程: +4(2)解不等式组并把解集表示在数轴上:.21(10分)已知AB是O的直径,弦CD与AB相交,BAC40(1)如图1,若D为弧AB的中点,求ABC和ABD的度数;(2)如图2,过点D作O的切线,与AB的延长线交于点P,若DPAC,求OCD的度数22(10分)先化简,然后从1,0,2中选一个合适的x的值,代入求值23(12分)已知是的函数,
7、自变量的取值范围是的全体实数,如表是与的几组对应值小华根据学习函数的经验,利用上述表格所反映出的与之间的变化规律,对该函数的图象与性质进行了探究下面是小华的探究过程,请补充完整:(1)从表格中读出,当自变量是2时,函数值是 ;(2)如图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点根据描出的点,画出该函数的图象;(3)在画出的函数图象上标出时所对应的点,并写出 (4)结合函数的图象,写出该函数的一条性质: 24(14分)2018年春节,西安市政府实施“点亮工程”,开展“西安年最中国”活动,元宵节晚上,小明一家人到“大唐不夜城”游玩,看美景、品美食。在美食一条街上,小明买了一碗元宵,共
8、5个,其中黑芝麻馅两个,五仁馅两个,桂花馅一个,当元宵端上来的时候,看着五个大小、色泽一模一样的元宵,小明的爸爸问了小明两个问题:(1)小明吃到第一个元宵是五仁馅的概率是多少?请你帮小明直接写出答案。(2)小明吃的前两个元宵是同一种馅的元宵概率是多少?请你利用你列表或树状图帮小明求出概率。参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】根据题意表示出PBQ的面积S与t的关系式,进而得出答案【详解】由题意可得:PB3t,BQ2t,则PBQ的面积SPBBQ(3t)2tt2+3t,故PBQ的面积S随出发时间t的函数关系图象大致是二次函数图象,开口向下故选C【点睛】此
9、题主要考查了动点问题的函数图象,正确得出函数关系式是解题关键2、A【解析】由图像经过点(0,m)、(4、m)可知对称轴为x=2,由nm知x=1时,y的值小于x=0时y的值,根据抛物线的对称性可知开口方向,即可知道a的取值.【详解】图像经过点(0,m)、(4、m)对称轴为x=2,则,4a+b=0图像经过点(1,n),且nm抛物线的开口方向向上,a0,故选A.【点睛】此题主要考查抛物线的图像,解题的关键是熟知抛物线的对称性.3、D【解析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形【详解】由俯视图易得几何体的底面为圆,还有表示锥顶的圆心,符合题意的只有圆锥故选D【点睛】本题考
10、查由三视图确定几何体的形状,主要考查学生空间想象能力以及对立体图形的认识4、A【解析】结合向左平移的法则,即可得到答案.【详解】解:将抛物线yx23向左平移2个单位可得y(x2)23,故选A.【点睛】此类题目主要考查二次函数图象的平移规律,解题的关键是要搞清已知函数解析式确定平移后的函数解析式,还是已知平移后的解析式求原函数解析式,然后根据图象平移规律“左加右减、上加下减“进行解答.5、D【解析】利用无理数定义判断即可.【详解】解:是无理数,故选:D.【点睛】此题考查了无理数,弄清无理数的定义是解本题的关键.6、A【解析】解:AE平分BAD,DAE=BAE;又四边形ABCD是平行四边形,ADB
11、C,BEA=DAE=BAE,AB=BE=6,BGAE,垂足为G,AE=2AG在RtABG中,AGB=90,AB=6,BG=,AG=2,AE=2AG=4;SABE=AEBG=BE=6,BC=AD=9,CE=BCBE=96=3,BE:CE=6:3=2:1,ABFC,ABEFCE,SABE:SCEF=(BE:CE)2=4:1,则SCEF=SABE=故选A【点睛】本题考查1相似三角形的判定与性质;2平行四边形的性质,综合性较强,掌握相关性质定理正确推理论证是解题关键7、A【解析】根据菱形的四条边都相等求出AB,再根据菱形的对角线互相平分可得OB=OD,然后判断出OE是ABD的中位线,再根据三角形的中位
12、线平行于第三边并且等于第三边的一半求解即可【详解】解:菱形ABCD的周长为28,AB=284=7,OB=OD,E为AD边中点,OE是ABD的中位线,OE=AB=7=3.1故选:A【点睛】本题考查了菱形的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质与定理是解题的关键8、C【解析】根据反比例函数k的几何意义,求出k的值即可解决问题【详解】解:过点P作PQx轴于点Q,OPQ的面积为2,|=2,k0,k=-1故选:C【点睛】本题考查反比例函数k的几何意义,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型9、A【解析】试题解析:原来的平均数是13岁,1323=299(岁
13、),正确的平均数a=12.9713,原来的中位数13岁,将14岁写成15岁,最中间的数还是13岁,b=13;故选A考点:1.平均数;2.中位数.10、C【解析】根据反比例函数y=的图象上点的坐标特征,以及该函数的图象的性质进行分析、解答【详解】A反比例函数的图像是双曲线,正确;Bk=20,图象位于一、三象限,正确;C在每一象限内,y的值随x的增大而减小,错误;Dab=ba,若点(a,b)在它的图像上,则点(b,a)也在它的图像上,故正确故选C【点睛】本题主要考查反比例函数的性质注意:反比例函数的增减性只指在同一象限内二、填空题(共7小题,每小题3分,满分21分)11、2【解析】设矩形OABC中
14、点B的坐标为,点E、F是AB、BC的中点,点E、F的坐标分别为:、,点E、F都在反比例函数的图象上,SOCF=,SOAE=,S矩形OABC=,S四边形OEBF= S矩形OABC- SOAE-SOCF=.即四边形OEBF的面积为2.点睛:反比例函数中“”的几何意义为:若点P是反比例函数图象上的一点,连接坐标原点O和点P,过点P向坐标轴作垂线段,垂足为点D,则SOPD=.12、45【解析】试题解析:如图,连接CE,AB=2,BC=1,DE=EF=1,CD=GF=2,在CDE和GFE中CDEGFE(SAS),CE=GE,CED=GEF,故答案为13、(-,1)【解析】根据如果位似变换是以原点为位似中
15、心,相似比为k,那么位似图形对应点的坐标的比等于k或k进行解答【详解】解:以原点O为位似中心,相似比为:2:1,将OAB缩小为OAB,点B(3,2)则点B(3,2)的对应点B的坐标为:(-,1),故答案为(-,1)【点睛】本题考查了位似变换:位似图形与坐标,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或k14、-1【解析】解:-3-2,(-3)*(-2)=(-3)-(-2)=-1故答案为-115、1:1【解析】分析:根据相似三角形的周长比等于相似比解答详解:ABC与ABC是关于点O的位似三角形,ABCABCOA=1OA,ABC与ABC的周长
16、之比是:OA:OA=1:1故答案为1:1点睛:本题考查的是位似变换的性质,位似变换的性质:两个图形必须是相似形;对应点的连线都经过同一点;对应边平行16、5【解析】试题分析:根据图形可知圆锥的侧面展开图的弧长为2102=10(cm),因此圆锥的底面半径为102=5(cm),因此圆锥的高为:=5(cm)考点:圆锥的计算17、1【解析】直接根据内角和公式计算即可求解.【详解】(n2)110=1010,解得n=1故答案为1【点睛】主要考查了多边形的内角和公式.多边形内角和公式:.三、解答题(共7小题,满分69分)18、见解析【解析】先连接AC,根据菱形性质证明EACFCA,然后结合中垂线的性质即可证
17、明点G在BD上.【详解】证明:如图,连接AC.四边形ABCD是菱形,DA=DC,BD与AC互相垂直平分,EAC=FCA. AE=CF,AC=CA, EACFCA, ECA=FAC, GA=GC, 点G在AC的中垂线上,点G在BD上.【点睛】此题重点考察学生对菱形性质的理解,掌握菱形性质和三角形全等证明方法是解题的关键.19、(1);(2)CDE=2A【解析】(1)在RtABC中,由勾股定理得到AB的长,从而得到半径AO 再由AOEACB,得到OE的长;(2)连结OC,得到1=A,再证3=CDE,从而得到结论【详解】(1)AB是O的直径,ACB=90,在RtABC中,由勾股定理得:AB=,AO=
18、AB=ODAB,AOE=ACB=90,又A=A,AOEACB,OE=.(2)CDE=2A理由如下:连结OC,OA=OC,1=A,CD是O的切线,OCCD,OCD=90,2+CDE=90,ODAB,2+3=90,3=CDE3=A+1=2A,CDE=2A考点:切线的性质;探究型;和差倍分20、(1)x=1(2)4x 【解析】(1)先将整理方程再乘以最小公分母移项合并即可;(2)求出每个不等式的解集,根据找不等式组解集的规律找出即可【详解】(1)+=4,方程整理得: =4,去分母得:x5=4(2x3),移项合并得:7x=7,解得:x=1;经检验x=1是分式方程的解;(2)解得:x解得:x4不等式组的
19、解集是4x,在数轴上表示不等式组的解集为:【点睛】本题考查了解一元二次方程组与分式方程,解题的关键是熟练的掌握解一元二次方程组与分式方程运算法则.21、(1)45;(2)26【解析】(1)根据圆周角和圆心角的关系和图形可以求得ABC和ABD的大小;(2)根据题意和平行线的性质、切线的性质可以求得OCD的大小【详解】(1)AB是O的直径,BAC=38, ACB=90,ABC=ACBBAC=9038=52,D为弧AB的中点,AOB=180,AOD=90,ABD=45;(2)连接OD,DP切O于点D,ODDP,即ODP=90,DPAC,BAC=38,P=BAC=38,AOD是ODP的一个外角,AOD
20、=P+ODP=128,ACD=64,OC=OA,BAC=38,OCA=BAC=38,OCD=ACDOCA=6438=26【点睛】本题考查切线的性质、圆周角定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答22、-. 【解析】先把分式除法转换成乘法进行约分化简,然后再找出分式的最小公分母通分进行化简求值,在代入求值时要保证每一个分式的分母不能为1【详解】解:原式= - = - = = =- . 当x=-1或者x=1时分式没有意义所以选择当x=2时,原式=.【点睛】分式的化简求值是此题的考点,需要特别注意的是分式的分母不能为123、(1);(2)见解析;(3);(4)当
21、时,随的增大而减小【解析】(1)根据表中,的对应值即可得到结论;(2)按照自变量由小到大,利用平滑的曲线连结各点即可;(3)在所画的函数图象上找出自变量为7所对应的函数值即可;(4)利用函数图象的图象求解【详解】解:(1)当自变量是2时,函数值是;故答案为:.(2)该函数的图象如图所示;(3)当时所对应的点 如图所示,且;故答案为:;(4)函数的性质:当时,随的增大而减小故答案为:当时,随的增大而减小【点睛】本题考查了函数值,函数的定义:对于函数概念的理解:有两个变量;一个变量的数值随着另一个变量的数值的变化而发生变化;对于自变量的每一个确定的值,函数值有且只有一个值与之对应24、(1) ; (2) .【解析】(1)根据概率=所求情况数与总情况数之比代入解得即可.(2)将小明吃到的前两个元宵的所有情况列表出来即可求解.【详解】(1)5个元宵中,五仁馅的有2个,故小明吃到的第一个元宵是五仁馅的概率是;(2)小明吃到的前两个元宵的所有情况列表如下(记黑芝麻馅的两个分别为、,五仁馅的两个分别为、,桂花馅的一个为c):由图可知,共有20种等可能的情况,其中小明吃到的前两个元宵是同一种馅料的情况有4种,故小明吃到的前两个元宵是同一种馅料的概率是.【点睛】本题考查的是用列表法求概率.列表法可以不重复不遗漏的列出所有可能的结果,用到的知识点为:概率=所求:情况数与总情况数之比.