四川省眉山实验高级中学2022-2023学年高三压轴卷数学试卷含解析.doc

上传人:lil****205 文档编号:87997459 上传时间:2023-04-19 格式:DOC 页数:20 大小:1.88MB
返回 下载 相关 举报
四川省眉山实验高级中学2022-2023学年高三压轴卷数学试卷含解析.doc_第1页
第1页 / 共20页
四川省眉山实验高级中学2022-2023学年高三压轴卷数学试卷含解析.doc_第2页
第2页 / 共20页
点击查看更多>>
资源描述

《四川省眉山实验高级中学2022-2023学年高三压轴卷数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《四川省眉山实验高级中学2022-2023学年高三压轴卷数学试卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

2、1周易历来被人们视作儒家群经之首,它表现了古代中华民族对万事万物的深刻而又朴素的认识,是中华人文文化的基础,它反映出中国古代的二进制计数的思想方法我们用近代术语解释为:把阳爻“- ”当作数字“1”,把阴爻“-”当作数字“0”,则八卦所代表的数表示如下:卦名符号表示的二进制数表示的十进制数坤0000震0011坎0102兑0113依此类推,则六十四卦中的“屯”卦,符号“ ”表示的十进制数是( )A18B17C16D152已知抛物线,过抛物线上两点分别作抛物线的两条切线为两切线的交点为坐标原点若,则直线与的斜率之积为( )ABCD3集合,则集合的真子集的个数是A1个B3个C4个D7个4已知集合,则A

3、BCD5已知函数f(x)sin2x+sin2(x),则f(x)的最小值为( )ABCD6已知集合,则为( )A0,2)B(2,3C2,3D(0,27执行如图所示的程序框图,若输出的结果为11,则图中的判断条件可以为( )ABCD8已知为抛物线的准线,抛物线上的点到的距离为,点的坐标为,则的最小值是( )AB4C2D9若复数(为虚数单位)的实部与虚部相等,则的值为( )ABCD10某几何体的三视图如图所示,则该几何体的体积为()ABCD11如图所示,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点E、F且EF=,则下列结论中错误的是( )AACBEBEF平面ABCDC三棱锥A

4、-BEF的体积为定值D异面直线AE,BF所成的角为定值12一个袋中放有大小、形状均相同的小球,其中红球1个、黑球2个,现随机等可能取出小球,当有放回依次取出两个小球时,记取出的红球数为;当无放回依次取出两个小球时,记取出的红球数为,则( )A,B,C,D,二、填空题:本题共4小题,每小题5分,共20分。13已知(2x-1)7=ao+a1x+ a2x2+a7x7,则a2=_.14为激发学生团结协作,敢于拼搏,不言放弃的精神,某校高三5个班进行班级间的拔河比赛每两班之间只比赛1场,目前()班已赛了4场,(二)班已赛了3场,(三)班已赛了2场,(四)班已赛了1场则目前(五)班已经参加比赛的场次为_1

5、5已知实数,满足约束条件则的最大值为_16已知是等比数列,且,则_,的最大值为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,在四棱锥中,和均为边长为的等边三角形.(1)求证:平面平面;(2)求二面角的余弦值.18(12分)已知抛物线的焦点为,直线交于两点(异于坐标原点O).(1)若直线过点,,求的方程;(2)当时,判断直线是否过定点,若过定点,求出定点坐标;若不过定点,说明理由.19(12分)已知函数,(1)证明:在区间单调递减;(2)证明:对任意的有20(12分)如图,湖中有一个半径为千米的圆形小岛,岸边点与小岛圆心相距千米,为方便游人到小岛观光,从点向

6、小岛建三段栈道,湖面上的点在线段上,且,均与圆相切,切点分别为,其中栈道,和小岛在同一个平面上.沿圆的优弧(圆上实线部分)上再修建栈道.记为.用表示栈道的总长度,并确定的取值范围;求当为何值时,栈道总长度最短.21(12分)在平面直角坐标系中,椭圆:的右焦点为(,为常数),离心率等于0.8,过焦点、倾斜角为的直线交椭圆于、两点求椭圆的标准方程;若时,求实数;试问的值是否与的大小无关,并证明你的结论22(10分)已知.(1)求不等式的解集;(2)记的最小值为,且正实数满足.证明:.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B

7、【解析】由题意可知“屯”卦符号“”表示二进制数字010001,将其转化为十进制数即可.【详解】由题意类推,可知六十四卦中的“屯”卦符号“”表示二进制数字010001,转化为十进制数的计算为120+124=1故选:B【点睛】本题主要考查数制是转化,新定义知识的应用等,意在考查学生的转化能力和计算求解能力.2、A【解析】设出A,B的坐标,利用导数求出过A,B的切线的斜率,结合,可得x1x21再写出OA,OB所在直线的斜率,作积得答案【详解】解:设A(),B(),由抛物线C:x21y,得,则y,由,可得,即x1x21又,故选:A点睛:(1)本题主要考查抛物线的简单几何性质,考查直线和抛物线的位置关系

8、,意在考查学生对这些基础知识的掌握能力和分析推理能力.(2)解答本题的关键是解题的思路,由于与切线有关,所以一般先设切点,先设A,B,再求切线PA,PB方程,求点P坐标,再根据得到最后求直线与的斜率之积.如果先设点P的坐标,计算量就大一些.3、B【解析】由题意,结合集合,求得集合,得到集合中元素的个数,即可求解,得到答案【详解】由题意,集合, 则,所以集合的真子集的个数为个,故选B【点睛】本题主要考查了集合的运算和集合中真子集的个数个数的求解,其中作出集合的运算,得到集合,再由真子集个数的公式作出计算是解答的关键,着重考查了推理与运算能力4、D【解析】因为,所以,故选D5、A【解析】先通过降幂

9、公式和辅助角法将函数转化为,再求最值.【详解】已知函数f(x)sin2x+sin2(x),=,=,因为,所以f(x)的最小值为.故选:A【点睛】本题主要考查倍角公式及两角和与差的三角函数的逆用,还考查了运算求解的能力,属于中档题.6、B【解析】先求出,得到,再结合集合交集的运算,即可求解.【详解】由题意,集合,所以,则,所以.故选:B.【点睛】本题主要考查了集合的混合运算,其中解答中熟记集合的交集、补集的定义及运算是解答的关键,着重考查了计算能力,属于基础题.7、B【解析】根据程序框图知当时,循环终止,此时,即可得答案.【详解】,.运行第一次,不成立,运行第二次,不成立,运行第三次,不成立,运

10、行第四次,不成立,运行第五次,成立,输出i的值为11,结束.故选:B.【点睛】本题考查补充程序框图判断框的条件,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意模拟程序一步一步执行的求解策略.8、B【解析】设抛物线焦点为,由题意利用抛物线的定义可得,当共线时,取得最小值,由此求得答案.【详解】解:抛物线焦点,准线,过作交于点,连接由抛物线定义,当且仅当三点共线时,取“”号,的最小值为.故选:B.【点睛】本题主要考查抛物线的定义、标准方程,以及简单性质的应用,体现了数形结合的数学思想,属于中档题.9、C【解析】利用复数的除法,以及复数的基本概念求解即可.【详解】,又

11、的实部与虚部相等,解得.故选:C【点睛】本题主要考查复数的除法运算,复数的概念运用.10、A【解析】利用已知条件画出几何体的直观图,然后求解几何体的体积【详解】几何体的三视图的直观图如图所示,则该几何体的体积为:故选:【点睛】本题考查三视图求解几何体的体积,判断几何体的形状是解题的关键11、D【解析】A通过线面的垂直关系可证真假;B根据线面平行可证真假;C根据三棱锥的体积计算的公式可证真假;D根据列举特殊情况可证真假.【详解】A因为,所以平面,又因为平面,所以,故正确;B因为,所以,且平面,平面,所以平面,故正确;C因为为定值,到平面的距离为,所以为定值,故正确;D当,取为,如下图所示:因为,

12、所以异面直线所成角为,且,当,取为,如下图所示:因为,所以四边形是平行四边形,所以,所以异面直线所成角为,且,由此可知:异面直线所成角不是定值,故错误.故选:D.【点睛】本题考查立体几何中的综合应用,涉及到线面垂直与线面平行的证明、异面直线所成角以及三棱锥体积的计算,难度较难.注意求解异面直线所成角时,将直线平移至同一平面内.12、B【解析】分别求出两个随机变量的分布列后求出它们的期望和方差可得它们的大小关系.【详解】可能的取值为;可能的取值为,故,.,故,,故,.故选B.【点睛】离散型随机变量的分布列的计算,应先确定随机变量所有可能的取值,再利用排列组合知识求出随机变量每一种取值情况的概率,

13、然后利用公式计算期望和方差,注意在取球模型中摸出的球有放回与无放回的区别.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据二项展开式的通项公式即可得结果.【详解】解:(2x-1)7的展开式通式为:当时,则.故答案为:【点睛】本题考查求二项展开式指定项的系数,是基础题.14、2【解析】根据比赛场次,分析,画出图象,计算结果.【详解】画图所示,可知目前(五)班已经赛了2场故答案为:2【点睛】本题考查推理,计数原理的图形表示,意在考查数形结合分析问题的能力,属于基础题型.15、1【解析】作出约束条件表示的可行域,转化目标函数为,当目标函数经过点时,直线的截距最大,取得最大值,即得解

14、.【详解】作出约束条件表示的可行域是以为顶点的三角形及其内部,转化目标函数为当目标函数经过点时,直线的截距最大此时取得最大值1故答案为:1【点睛】本题考查了线性规划问题,考查了学生转化划归,数形结合,数学运算能力,属于基础题.16、5 【解析】 ,即的最大值为三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、 (1)见证明;(2) 【解析】(1) 取的中点,连接,要证平面平面,转证平面,即证, 即可;(2) 以为坐标原点,以为轴正方向,建立如图所示的空间直角坐标系,分别求出平面与平面的法向量,代入公式,即可得到结果.【详解】(1)取的中点,连接,因为均为边长为的等边三角形,所

15、以,且因为,所以,所以,又因为,平面,平面,所以平面.又因为平面,所以平面平面.(2)因为,为等边三角形,所以,又因为,所以,在中,由正弦定理,得:,所以.以为坐标原点,以为轴正方向,建立如图所示的空间直角坐标系,则,设平面的法向量为,则,即,令,则平面的一个法向量为,依题意,平面的一个法向量所以故二面角的余弦值为.【点睛】空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离

16、.18、(1)(2)直线过定点【解析】设.(1)由题意知,.设直线的方程为,由得,则,由根与系数的关系可得,所以.由,得,解得.所以抛物线的方程为.(2)设直线的方程为,由得,由根与系数的关系可得, 所以,解得.所以直线的方程为,所以时,直线过定点.19、(1)答案见解析(2)答案见解析【解析】(1)利用复合函数求导求出,利用导数与函数单调性之间的关系即可求解. (2)首先证,令,求导可得单调递增,由即可证出;再令,再利用导数可得单调递增,由即可证出.【详解】(1)显然时,故在单调递减(2)首先证,令,则单调递增,且,所以再令,所以单调递增,即,【点睛】本题考查了利用导数研究函数的单调性、利用

17、导数证明不等式,解题的关键掌握复合函数求导,属于难题.20、,;当时,栈道总长度最短.【解析】连,由切线长定理知:,即,则,进而确定的取值范围;根据求导得,利用增减性算出,进而求得取值.【详解】解:连,由切线长定理知:,又,故,则劣弧的长为,因此,优弧的长为,又,故,即,所以,则;,其中,-0+单调递减极小值单调递增故时,所以当时,栈道总长度最短.【点睛】本题主要考查导数在函数当中的应用,属于中档题.21、(1)(2)(3)为定值【解析】试题分析:(1)利用待定系数法可得,椭圆方程为;(2)我们要知道=的条件应用,在于直线交椭圆两交点M,N的横坐标为,这样代入椭圆方程,容易得到,从而解得;(3

18、) 需讨论斜率是否存在一方面斜率不存在即=时,由(2)得;另一方面,当斜率存在即时,可设直线的斜率为,得直线MN:,联立直线与椭圆方程,利用韦达定理和焦半径公式,就能得到,所以为定值,与直线的倾斜角的大小无关试题解析:(1),得:,椭圆方程为(2)当时,得:,于是当=时,于是,得到(3)当=时,由(2)知当时,设直线的斜率为,则直线MN:联立椭圆方程有,=+=得综上,为定值,与直线的倾斜角的大小无关考点:(1)待定系数求椭圆方程;(2)椭圆简单的几何性质;(3)直线与圆锥曲线22、(1)或;(2)见解析【解析】(1)根据,利用零点分段法解不等式,或作出函数的图像,利用函数的图像解不等式;(2)由(1)作出的函数图像求出的最小值为,可知,代入中,然后给等式两边同乘以,再将写成后,化简变形,再用均值不等式可证明.【详解】(1)解法一:1时,即,解得;2时,即,解得;3时,即,解得.综上可得,不等式的解集为或.解法二:由作出图象如下:由图象可得不等式的解集为或.(2)由所以在上单调递减,在上单调递增,所以,正实数满足,则,即,(当且仅当即时取等号)故,得证.【点睛】此题考查了绝对值不等式的解法,绝对值不等式的性质和均值不等式的运用,考查了分类讨论思想和转化思想,属于中档题.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁