四川省泸州泸县2022-2023学年中考一模数学试题含解析.doc

上传人:lil****205 文档编号:87997379 上传时间:2023-04-19 格式:DOC 页数:19 大小:756KB
返回 下载 相关 举报
四川省泸州泸县2022-2023学年中考一模数学试题含解析.doc_第1页
第1页 / 共19页
四川省泸州泸县2022-2023学年中考一模数学试题含解析.doc_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《四川省泸州泸县2022-2023学年中考一模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《四川省泸州泸县2022-2023学年中考一模数学试题含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,将矩形ABCD沿EM折叠,使顶点B恰好落在CD边的中点N上若AB=6,AD=9,则五边形ABMND的周长为()A2

2、8B26C25D222某校有35名同学参加眉山市的三苏文化知识竞赛,预赛分数各不相同,取前18名同学参加决赛. 其中一名同学知道自己的分数后,要判断自己能否进入决赛,只需要知道这35名同学分数的( ).A众数B中位数C平均数D方差3如果m的倒数是1,那么m2018等于()A1B1C2018D20184下列运算正确的是( )ABCD5如图,等腰直角三角板ABC的斜边AB与量角器的直径重合,点D是量角器上60刻度线的外端点,连接CD交AB于点E,则CEB的度数为( )A60B65C70D756在RtABC中,C90,AB4,AC1,则cosB的值为()ABCD7若m,n是一元二次方程x22x1=0

3、的两个不同实数根,则代数式m2m+n的值是()A1B3C3D18我国古代数学名著孙子算经中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()ABCD9有下列四种说法:半径确定了,圆就确定了;直径是弦;弦是直径;半圆是弧,但弧不一定是半圆其中,错误的说法有()A1种B2种C3种D4种10已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有30个,黑球有n个随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出的

4、黑球的频率稳定在0.4附近,则n的值约为( )A20B30C40D5011一家商店将某种服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件作服装仍可获利15元,则这种服装每件的成本是( )A120元B125元C135元D140元12下列各数中,比1大1的是()A0 B1 C2 D3二、填空题:(本大题共6个小题,每小题4分,共24分)13一个不透明的袋子中装有三个小球,它们除分别标有的数字 1,3,5 不同外,其他完全相同从袋子中任意摸出一球后放回,再任意摸出一球,则两次摸出的球所标数字之 和为8的概率是_14已知关于x的方程有两个不相等的实数根,则m的取值范围是_1

5、5对于任意实数m、n,定义一种运算mn=mnmn+3,等式的右边是通常的加减和乘法运算,例如:35=3535+3=1请根据上述定义解决问题:若a2x7,且解集中有两个整数解,则a的取值范围是_16如图,矩形ABCD中,AB=2AD,点A(0,1),点C、D在反比例函数y=(k0)的图象上,AB与x轴的正半轴相交于点E,若E为AB的中点,则k的值为_17将一张长方形纸片折叠成如图所示的形状,则ABC=_18如图,以点O为圆心的两个圆中,大圆的弦AB切小圆于点C,OA交小圆于点D,若OD=2,tanOAB=,则AB的长是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算

6、步骤19(6分)如图,有两个形状完全相同的直角三角形ABC和EFG叠放在一起(点A与点E重合),已知AC=8cm,BC=6cm,C=90,EG=4cm,EGF=90,O是EFG斜边上的中点如图,若整个EFG从图的位置出发,以1cm/s的速度沿射线AB方向平移,在EFG平移的同时,点P从EFG的顶点G出发,以1cm/s的速度在直角边GF上向点F运动,当点P到达点F时,点P停止运动,EFG也随之停止平移设运动时间为x(s),FG的延长线交AC于H,四边形OAHP的面积为y(cm2)(不考虑点P与G、F重合的情况)(1)当x为何值时,OPAC;(2)求y与x之间的函数关系式,并确定自变量x的取值范围

7、;(3)是否存在某一时刻,使四边形OAHP面积与ABC面积的比为13:24?若存在,求出x的值;若不存在,说明理由(参考数据:1142=12996,1152=13225,1162=13456或4.42=19.36,4.52=20.25,4.62=21.16)20(6分)如图,已知在中,是的平分线(1)作一个使它经过两点,且圆心在边上;(不写作法,保留作图痕迹)(2)判断直线与的位置关系,并说明理由21(6分)某市旅游景区有A,B,C,D,E等著名景点,该市旅游部门统计绘制出2018年春节期间旅游情况统计图(如图),根据图中信息解答下列问题:(1)2018年春节期间,该市A,B,C,D,E这五个

8、景点共接待游客 万人,扇形统计图中E景点所对应的圆心角的度数是 ,并补全条形统计图(2)甲,乙两个旅行团在A,B,D三个景点中随机选择一个,这两个旅行团选中同一景点的概率是 22(8分)如图,在平面直角坐标系中,抛物线C1经过点A(4,0)、B(1,0),其顶点为(1)求抛物线C1的表达式;(2)将抛物线C1绕点B旋转180,得到抛物线C2,求抛物线C2的表达式;(3)再将抛物线C2沿x轴向右平移得到抛物线C3,设抛物线C3与x轴分别交于点E、F(E在F左侧),顶点为G,连接AG、DF、AD、GF,若四边形ADFG为矩形,求点E的坐标23(8分)某电器商场销售甲、乙两种品牌空调,已知每台乙种品

9、牌空调的进价比每台甲种品牌空调的进价高20,用7200元购进的乙种品牌空调数量比用3000元购进的甲种品牌空调数量多2台 求甲、乙两种品牌空调的进货价; 该商场拟用不超过16000元购进甲、乙两种品牌空调共10台进行销售,其中甲种品牌空调的售价为2500元台,乙种品牌空调的售价为3500元台请您帮该商场设计一种进货方案,使得在售完这10台空调后获利最大,并求出最大利润24(10分)如图,在直角坐标系xOy中,直线与双曲线相交于A(1,a)、B两点,BCx轴,垂足为C,AOC的面积是1求m、n的值;求直线AC的解析式25(10分)某景区门票价格80元/人,景区为吸引游客,对门票价格进行动态管理,

10、非节假日打a折,节假日期间,10人以下(包括10人)不打折,10人以上超过10人的部分打b折,设游客为x人,门票费用为y元,非节假日门票费用y1(元)及节假日门票费用y2(元)与游客x(人)之间的函数关系如图所示(1)a= ,b= ;(2)确定y2与x之间的函数关系式:(3)导游小王6月10日(非节假日)带A旅游团,6月20日(端午节)带B旅游团到该景区旅游,两团共计50人,两次共付门票费用3040元,求A、B两个旅游团各多少人?26(12分)解分式方程:=27(12分)如图,在ABC中,AD=15,AC=12,DC=9,点B是CD延长线上一点,连接AB,若AB=1求:ABD的面积参考答案一、

11、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、A【解析】如图,运用矩形的性质首先证明CN=3,C=90;运用翻折变换的性质证明BM=MN(设为),运用勾股定理列出关于的方程,求出,即可解决问题【详解】如图,由题意得:BM=MN(设为),CN=DN=3;四边形ABCD为矩形,BC=AD=9,C=90,MC=9-;由勾股定理得:2=(9-)2+32,解得:=5,五边形ABMND的周长=6+5+5+3+9=28,故选A【点睛】该题主要考查了翻折变换的性质、矩形的性质、勾股定理等几何知识点及其应用问题;解题的关键是灵活运用翻折变换的性质、矩形的

12、性质、勾股定理等几何知识点来分析、判断、推理或解答2、B【解析】分析:由于比赛取前18名参加决赛,共有35名选手参加,根据中位数的意义分析即可详解:35个不同的成绩按从小到大排序后,中位数及中位数之后的共有18个数,故只要知道自己的成绩和中位数就可以知道是否进入决赛了故选B点睛:本题考查了统计量的选择,以及中位数意义,解题的关键是正确的求出这组数据的中位数3、A【解析】因为两个数相乘之积为1,则这两个数互为倒数, 如果m的倒数是1,则m=-1,然后再代入m2018计算即可.【详解】因为m的倒数是1,所以m=-1,所以m2018=(-1)2018=1,故选A.【点睛】本题主要考查倒数的概念和乘方

13、运算,解决本题的关键是要熟练掌握倒数的概念和乘方运算法则.4、D【解析】【分析】根据同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的法则逐项进行计算即可得.【详解】A. ,故A选项错误,不符合题意;B. ,故B选项错误,不符合题意;C. ,故C选项错误,不符合题意;D. ,正确,符合题意,故选D.【点睛】本题考查了整式的运算,熟练掌握同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的运算法则是解题的关键.5、D【解析】解:连接ODAOD=60,ACD=30.CEB是ACE的外角,CEBACD+CAO=30+45=75故选:D6、A【解析】在RtABC中,C=90,AB=4,AC=1,BC

14、= ,则cosB= ,故选A7、B【解析】把m代入一元二次方程,可得,再利用两根之和,将式子变形后,整理代入,即可求值【详解】解:若,是一元二次方程的两个不同实数根,故选B【点睛】本题考查了一元二次方程根与系数的关系,及一元二次方程的解,熟记根与系数关系的公式8、C【解析】设大马有x匹,小马有y匹,根据题意可得等量关系:大马数小马数100;大马拉瓦数小马拉瓦数100,根据等量关系列出方程组即可【详解】解:设大马有x匹,小马有y匹,由题意得:,故选C【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组9、B【解析】根据弦的定义、弧的定义、以及

15、确定圆的条件即可解决【详解】解:圆确定的条件是确定圆心与半径,是假命题,故此说法错误;直径是弦,直径是圆内最长的弦,是真命题,故此说法正确;弦是直径,只有过圆心的弦才是直径,是假命题,故此说法错误;半圆是弧,但弧不一定是半圆,圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫半圆,所以半圆是弧但比半圆大的弧是优弧,比半圆小的弧是劣弧,不是所有的弧都是半圆,是真命题,故此说法正确其中错误说法的是两个故选B【点睛】本题考查弦与直径的区别,弧与半圆的区别,及确定圆的条件,不要将弦与直径、弧与半圆混淆10、A【解析】分析:根据白球的频率稳定在0.4附近得到白球的概率约为0.4,根据白球个数确定出总

16、个数,进而确定出黑球个数n.详解:根据题意得: ,计算得出:n=20,故选A.点睛:根据概率的求法,找准两点:全部情况的总数;符合条件的情况数目;二者的比值就是其发生的概率.11、B【解析】试题分析:通过理解题意可知本题的等量关系,即每件作服装仍可获利=按成本价提高40%后标价,又以8折卖出,根据这两个等量关系,可列出方程,再求解解:设这种服装每件的成本是x元,根据题意列方程得:x+15=(x+40%x)80%解这个方程得:x=125则这种服装每件的成本是125元故选B考点:一元一次方程的应用12、A【解析】用-1加上1,求出比-1大1的是多少即可【详解】-1+1=1,比-1大1的是1故选:A

17、【点睛】本题考查了有理数加法的运算,解题的关键是要熟练掌握: “先符号,后绝对值”二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】根据题意列出表格或树状图即可解答【详解】解:根据题意画出树状图如下:总共有9种情况,其中两个数字之和为8的有2种情况,故答案为:【点睛】本题考查了概率的求解,解题的关键是画出树状图或列出表格,并熟记概率的计算公式14、【解析】试题分析:若一元二次方程有两个不相等的实数根,则根的判别式=b24ac0,建立关于m的不等式,解不等式即可求出m的取值范围 关于x的方程x26x+m=0有两个不相等的实数根,=b24ac=(6)24m=364m0, 解得:m

18、1考点:根的判别式15、【解析】解:根据题意得:2x=2x2x+3=x+1,ax+17,即a1x6解集中有两个整数解,a的范围为,故答案为【点睛】本题考查一元一次不等式组的整数解,准确理解题意正确计算是本题的解题关键16、【解析】解:如图,作DFy轴于F,过B点作x轴的平行线与过C点垂直与x轴的直线交于G,CG交x轴于K,作BHx轴于H,四边形ABCD是矩形,BAD=90,DAF+OAE=90,AEO+OAE=90,DAF=AEO,AB=2AD,E为AB的中点,AD=AE,在ADF和EAO中,DAF=AEO,AFD=AOE=90,AD=AE,ADFEAO(AAS),DF=OA=1,AF=OE,

19、D(1,k),AF=k1,同理;AOEBHE,ADFCBG,BH=BG=DF=OA=1,EH=CG=OE=AF=k1,OK=2(k1)+1=2k1,CK=k2,C(2k1,k2),(2k1)(k2)=1k,解得k1=,k2=,k10,k=故答案为 点睛:本题考查了矩形的性质和反比例函数图象上点的坐标特征图象上的点(x,y)的横纵坐标的积是定值k,即xy=k17、73【解析】试题解析:CBD=34,CBE=180-CBD=146,ABC=ABE=CBE=7318、8【解析】如图,连接OC,在在RtACO中,由tanOAB=,求出AC即可解决问题【详解】解:如图,连接OCAB是O切线,OCAB,A

20、C=BC,在RtACO中,ACO=90,OC=OD=2tanOAB=,AC=4,AB=2AC=8,故答案为8【点睛】本题考查切线的性质、垂径定理、勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形,属于中考常考题型三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)1.5s;(2)S=x2+x+3(0x3);(3)当x=(s)时,四边形OAHP面积与ABC面积的比为13:1【解析】(1)由于O是EF中点,因此当P为FG中点时,OPEGAC,据此可求出x的值(2)由于四边形AHPO形状不规则,可根据三角形AFH和三角形OPF的面积差来得出四边形

21、AHPO的面积三角形AHF中,AH的长可用AF的长和FAH的余弦值求出,同理可求出FH的表达式(也可用相似三角形来得出AH、FH的长)三角形OFP中,可过O作ODFP于D,PF的长易知,而OD的长,可根据OF的长和FOD的余弦值得出由此可求得y、x的函数关系式(3)先求出三角形ABC和四边形OAHP的面积,然后将其代入(2)的函数式中即可得出x的值【详解】解:(1)RtEFGRtABC,即,FG=3cm当P为FG的中点时,OPEG,EGACOPACx=3=1.5(s)当x为1.5s时,OPAC(2)在RtEFG中,由勾股定理得EF=5cmEGAHEFGAFH,AH=(x+5),FH=(x+5)

22、过点O作ODFP,垂足为D点O为EF中点OD=EG=2cmFP=3xS四边形OAHP=SAFHSOFP=AHFHODFP=(x+5)(x+5)2(3x)=x2+x+3(0x3)(3)假设存在某一时刻x,使得四边形OAHP面积与ABC面积的比为13:1则S四边形OAHP=SABCx2+x+3=686x2+85x250=0解得x1=,x2=(舍去)0x3当x=(s)时,四边形OAHP面积与ABC面积的比为13:1【点睛】本题是比较常规的动态几何压轴题,第1小题运用相似形的知识容易解决,第2小题同样是用相似三角形建立起函数解析式,要说的是本题中说明了要写出自变量x的取值范围,而很多试题往往不写,要记

23、住自变量x的取值范围是函数解析式不可分离的一部分,无论命题者是否交待了都必须写,第3小题只要根据函数解析式列个方程就能解决20、(1)见解析;(2)与相切,理由见解析【解析】(1)作出AD的垂直平分线,交AB于点O,进而利用AO为半径求出即可;(2)利用半径相等结合角平分线的性质得出ODAC,进而求出ODBC,进而得出答案【详解】(1)分别以为圆心,大于的长为半径作弧,两弧相交于点和,作直线,与相交于点,以为圆心,为半径作圆,如图即为所作;(2)与相切,理由如下:连接OD,为半径,是等腰三角形,平分,为半径,与相切【点睛】本题主要考查了切线的判定以及线段垂直平分线的作法与性质等知识,掌握切线的

24、判定方法是解题关键21、(1)50,43.2,补图见解析;(2)【解析】(1)由A景点的人数以及百分比进行计算即可得到该市周边景点共接待游客数;再根据扇形圆心角的度数=部分占总体的百分比360进行计算即可;根据B景点接待游客数补全条形统计图;(2)根据甲、乙两个旅行团在A、B、D三个景点中各选择一个景点,画出树状图,根据概率公式进行计算,即可得到同时选择去同一景点的概率【详解】解:(1)该市景点共接待游客数为:1530%=50(万人),E景点所对应的圆心角的度数是: B景点人数为:5024%=12(万人),补全条形统计图如下:故答案是:50,43.2o.(2)画树状图可得:共有9种可能出现的结

25、果,这些结果出现的可能性相等,其中同时选择去同一个景点的结果有3种,同时选择去同一个景点的概率=.22、(1)y;(2);(3)E(,0)【解析】(1)根据抛物线C1的顶点坐标可设顶点式将点B坐标代入求解即可;(2)由抛物线C1绕点B旋转180得到抛物线C2知抛物线C2的顶点坐标,可设抛物线C2的顶点式,根据旋转后抛物线C2开口朝下,且形状不变即可确定其表达式;(3)作GKx轴于G,DHAB于H,由题意GK=DH=3,AH=HB=EK=KF,结合矩形的性质利用两组对应角分别相等的两个三角形相似可证AGKGFK,由其对应线段成比例的性质可知AK长,结合A、B点坐标可知BK、BE、OE长,可得点E

26、坐标.【详解】解:(1)抛物线C1的顶点为,可设抛物线C1的表达式为y,将B(1,0)代入抛物线解析式得:,解得:a,抛物线C1的表达式为y,即y(2)设抛物线C2的顶点坐标为 抛物线C1绕点B旋转180,得到抛物线C2,即点与点关于点B(1,0)对称 抛物线C2的顶点坐标为()可设抛物线C2的表达式为y抛物线C2开口朝下,且形状不变 抛物线C2的表达式为y,即(3)如图,作GKx轴于G,DHAB于H由题意GK=DH=3,AH=HB=EK=KF,四边形AGFD是矩形,AGF=GKF=90,AGK+KGF=90,KGF+GFK=90,AGK=GFKAKG=FKG=90,AGKGFK,AK=6,B

27、E=BKEK=3,OE,E(,0)【点睛】本题考查了二次函数与几何的综合,涉及了待定系数法求二次函数解析式、矩形的性质、相似三角形的判定和性质、旋转变换的性质,灵活的利用待定系数法求二次函数解析式是解前两问的关键,熟练掌握相似三角形的判定与性质是解(3)的关键.23、(1)甲种品牌的进价为1500元,乙种品牌空调的进价为1800元;(2)当购进甲种品牌空调7台,乙种品牌空调3台时,售完后利润最大,最大为12100元【解析】(1)设甲种品牌空调的进货价为x元/台,则乙种品牌空调的进货价为1.2x元/台,根据数量=总价单价可得出关于x的分式方程,解之并检验后即可得出结论;(2)设购进甲种品牌空调a

28、台,所获得的利润为y元,则购进乙种品牌空调(10-a)台,根据总价=单价数量结合总价不超过16000 元,即可得出关于a的一元一次不等式,解之即可得出a的取值范围,再由总利润=单台利润购进数量即可得出y关于a的函数关系式,利用一次函数的性质即可解决最值问题【详解】(1)由(1)设甲种品牌的进价为x元,则乙种品牌空调的进价为(1+20%)x元,由题意,得 ,解得x=1500,经检验,x=1500是原分式方程的解,乙种品牌空调的进价为(1+20%)1500=1800(元).答:甲种品牌的进价为1500元,乙种品牌空调的进价为1800元;(2)设购进甲种品牌空调a台,则购进乙种品牌空调(10-a)台

29、,由题意,得1500a+1800(10-a)16000,解得 a,设利润为w,则w=(2500-1500)a+(3500-1800)(10-a)=-700a+17000,因为-7000,则w随a的增大而减少,当a=7时,w最大,最大为12100元.答:当购进甲种品牌空调7台,乙种品牌空调3台时,售完后利润最大,最大为12100元.【点睛】本题考查了一次函数的应用、分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据数量=总价单价列出关于x的分式方程;(2)根据总利润=单台利润购进数量找出y关于a的函数关系式24、(1)m1,n1;(2)yx【解析】(1)由直线与双曲线相交于A(1,

30、a)、B两点可得B点横坐标为1,点C的坐标为(1,0),再根据AOC的面积为1可求得点A的坐标,从而求得结果;(2)设直线AC的解析式为ykxb,由图象过点A(1,1)、C(1,0)根据待定系数法即可求的结果.【详解】(1)直线与双曲线相交于A(1,a)、B两点,B点横坐标为1,即C(1,0)AOC的面积为1,A(1,1)将A(1,1)代入,可得m1,n1;(2)设直线AC的解析式为ykxbykxb经过点A(1,1)、C(1,0)解得k,b直线AC的解析式为yx【点睛】本题考查了一次函数与反比例函数图象的交点问题,此类问题是初中数学的重点,在中考中极为常见,熟练掌握待定系数法是解题关键.25、

31、(1)a=6,b=8;(2);(3)A团有20人,B团有30人.【解析】(1)根据函数图像,用购票款数除以定价的款数,计算即可求得a的值;用11人到20人的购票款数除以定价的款数,计算即可解得b的值;(2)分0x10与x10,利用待定系数法确定函数关系式求得y2的函数关系式即可;(3)设A团有n人,表示出B团的人数为(50-n),然后分0x10与x10两种情况,根据(2)中的函数关系式列出方程求解即可.【详解】(1)由y1图像上点(10,480),得到10人的费用为480元,a=;由y2图像上点(10,480)和(20,1440),得到20人中后10人的费用为640元,b=;(2)0x10时,

32、设y2=k2x,把(10, 800)代入得10k2=800,解得k2=80,y2=80x,x10,设y2=kx+b,把(10, 800)和(20,1440)代入得解得y2=64x+160(3)设B团有n人,则A团的人数为(50-n)当0n10时80n+48(50-n)=3040,解得n=20(不符合题意舍去)当n10时,解得n=30.则50-n=20人,则A团有20人,B团有30人.【点睛】此题主要考查一次函数的综合运用,解题的关键是熟知待定系数法确定函数关系式.26、x=1【解析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解【详解】方程两边都乘以x(x2),得:x=1(x2),解得:x=1,检验:x=1时,x(x2)=11=10,则分式方程的解为x=1【点睛】本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验27、2.【解析】试题分析:由勾股定理的逆定理证明ADC是直角三角形,C=90,再由勾股定理求出BC,得出BD,即可得出结果解:在ADC中,AD=15,AC=12,DC=9,AC2+DC2=122+92=152=AD2,即AC2+DC2=AD2,ADC是直角三角形,C=90,在RtABC中,BC=16,BD=BCDC=169=7,ABD的面积=712=2

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁