《北京市清华大附属中学2022-2023学年中考数学五模试卷含解析.doc》由会员分享,可在线阅读,更多相关《北京市清华大附属中学2022-2023学年中考数学五模试卷含解析.doc(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,在四边形ABCD中,A+D=,ABC的平分线与BCD的平分线交于点P,则P=() A90-B90+ CD360-2把多项式x2+ax+b分解因式,得(x+1)(x-3),则a、b的值分
2、别是( )Aa=2,b=3Ba=-2,b=-3Ca=-2,b=3Da=2,b=-33有下列四种说法:半径确定了,圆就确定了;直径是弦;弦是直径;半圆是弧,但弧不一定是半圆其中,错误的说法有()A1种B2种C3种D4种4下列图标中,是中心对称图形的是()ABCD5下列现象,能说明“线动成面”的是()A天空划过一道流星B汽车雨刷在挡风玻璃上刷出的痕迹C抛出一块小石子,石子在空中飞行的路线D旋转一扇门,门在空中运动的痕迹6在数轴上标注了四段范围,如图,则表示的点落在( )A段B段C段D段7有理数a、b在数轴上的位置如图所示,则下列结论中正确的是()Aa+b0Bab0CaboDab08在平面直角坐标系
3、中,已知点A(4,2),B(6,4),以原点O为位似中心,相似比为,把ABO缩小,则点A的对应点A的坐标是()A(2,1)B(8,4)C(8,4)或(8,4)D(2,1)或(2,1)9如图所示是8个完全相同的小正方体组成的几何体,则该几何体的左视图是( )ABCD10已知空气的单位体积质量是0.001239g/cm3,则用科学记数法表示该数为( )A1.239103g/cm3B1.239102g/cm3C0.1239102g/cm3D12.39104g/cm311已知:如图,点P是正方形ABCD的对角线AC上的一个动点(A、C除外),作PEAB于点E,作PFBC于点F,设正方形ABCD的边长为
4、x,矩形PEBF的周长为y,在下列图象中,大致表示y与x之间的函数关系的是()ABCD12一副直角三角板如图放置,其中,点F在CB的延长线上若,则等于( )A35B25C30D15二、填空题:(本大题共6个小题,每小题4分,共24分)13对于任意实数a、b,定义一种运算:ab=aba+b1例如,15=151+51=ll请根据上述的定义解决问题:若不等式3x1,则不等式的正整数解是_14如图,在平面直角坐标系中,矩形OACB的顶点O是坐标原点,顶点A、B分别在x轴、y轴的正半轴上,OA3,OB4,D为边OB的中点若E为边OA上的一个动点,当CDE的周长最小时,则点E的坐标_ 15用配方法将方程x
5、2+10x110化成(x+m)2n的形式(m、n为常数),则m+n_16如图,在ABC中,CA=CB,ACB=90,AB=2,点D为AB的中点,以点D为圆心作圆心角为90的扇形DEF,点C恰在弧EF上,则图中阴影部分的面积为_17若关于x的一元二次方程有两个不相等的实数根,则k的取值范围是_182018年5月18日,益阳新建西流湾大桥竣工通车,如图,从沅江A地到资阳B地有两条路线可走,从资阳B地到益阳火车站可经会龙山大桥或西流湾大桥或龙洲大桥到达,现让你随机选择一条从沅江A地出发经过资阳B地到达益阳火车站的行走路线,那么恰好选到经过西流湾大桥的路线的概率是_三、解答题:(本大题共9个小题,共7
6、8分,解答应写出文字说明、证明过程或演算步骤19(6分)矩形ABCD中,DE平分ADC交BC边于点E,P为DE上的一点(PEPD),PMPD,PM交AD边于点M(1)若点F是边CD上一点,满足PFPN,且点N位于AD边上,如图1所示求证:PN=PF;DF+DN=DP;(2)如图2所示,当点F在CD边的延长线上时,仍然满足PFPN,此时点N位于DA边的延长线上,如图2所示;试问DF,DN,DP有怎样的数量关系,并加以证明20(6分)将一个等边三角形纸片AOB放置在平面直角坐标系中,点O(0,0),点B(6,0)点C、D分别在OB、AB边上,DCOA,CB=2(I)如图,将DCB沿射线CB方向平移
7、,得到DCB当点C平移到OB的中点时,求点D的坐标;(II)如图,若边DC与AB的交点为M,边DB与ABB的角平分线交于点N,当BB多大时,四边形MBND为菱形?并说明理由(III)若将DCB绕点B顺时针旋转,得到DCB,连接AD,边DC的中点为P,连接AP,当AP最大时,求点P的坐标及AD的值(直接写出结果即可)21(6分)如图,已知一次函数的图象与反比例函数的图象交于点,且与轴交于点;点在反比例函数的图象上,以点为圆心,半径为的作圆与轴,轴分别相切于点、(1)求反比例函数和一次函数的解析式;(2)请连结,并求出的面积;(3)直接写出当时,的解集22(8分)如图,在平面直角坐标xOy中,正比
8、例函数ykx的图象与反比例函数y的图象都经过点A(2,2)(1)分别求这两个函数的表达式;(2)将直线OA向上平移3个单位长度后与y轴交于点B,与反比例函数图象在第四象限内的交点为C,连接AB,AC,求点C的坐标及ABC的面积23(8分)如图,一条公路的两侧互相平行,某课外兴趣小组在公路一侧AE的点A处测得公路对面的点C与AE的夹角CAE=30,沿着AE方向前进15米到点B处测得CBE=45,求公路的宽度(结果精确到0.1米,参考数据:1.73)24(10分)计算:4cos30+|3|()1+(2018)025(10分)如图,抛物线y=x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线
9、的对称轴交x轴于点D,已知A(1,0),C(0,2)(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标26(12分)汤姆斯杯世界男子羽毛球团体赛小组赛比赛规则:两队之间进行五局比赛,其中三局单打,两局双打,五局比赛必须全部打完,赢得三局及以上的队获胜假如甲,乙两队每局获胜的机会相同若前四局双方战成2:2,那么甲队最终获胜的概率是_;
10、现甲队在前两局比赛中已取得2:0的领先,那么甲队最终获胜的概率是多少?27(12分)如图,在ABC中,D为BC边上一点,AC=DC,E为AB边的中点,(1)尺规作图:作C的平分线CF,交AD于点F(保留作图痕迹,不写作法);(2)连接EF,若BD=4,求EF的长参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】试题分析:四边形ABCD中,ABC+BCD=360(A+D)=360,PB和PC分别为ABC、BCD的平分线,PBC+PCB=(ABC+BCD)=(360)=180,则P=180(PBC+PCB)=180(180
11、)=故选C考点:1.多边形内角与外角2.三角形内角和定理2、B【解析】分析:根据整式的乘法,先还原多项式,然后对应求出a、b即可.详解:(x+1)(x-3)=x2-3x+x-3=x2-2x-3所以a=2,b=-3,故选B点睛:此题主要考查了整式的乘法和因式分解的关系,利用它们之间的互逆运算的关系是解题关键.3、B【解析】根据弦的定义、弧的定义、以及确定圆的条件即可解决【详解】解:圆确定的条件是确定圆心与半径,是假命题,故此说法错误;直径是弦,直径是圆内最长的弦,是真命题,故此说法正确;弦是直径,只有过圆心的弦才是直径,是假命题,故此说法错误;半圆是弧,但弧不一定是半圆,圆的任意一条直径的两个端
12、点把圆分成两条弧,每一条弧都叫半圆,所以半圆是弧但比半圆大的弧是优弧,比半圆小的弧是劣弧,不是所有的弧都是半圆,是真命题,故此说法正确其中错误说法的是两个故选B【点睛】本题考查弦与直径的区别,弧与半圆的区别,及确定圆的条件,不要将弦与直径、弧与半圆混淆4、B【解析】根据中心对称图形的概念 对各选项分析判断即可得解【详解】解:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误故选B【点睛】本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合5、B【解析】本题是一道关于点、线、
13、面、体的题目,回忆点、线、面、体的知识;【详解】解:A、天空划过一道流星说明“点动成线”,故本选项错误.B、汽车雨刷在挡风玻璃上刷出的痕迹说明“线动成面”,故本选项正确.C、抛出一块小石子,石子在空中飞行的路线说明“点动成线”,故本选项错误.D、旋转一扇门,门在空中运动的痕迹说明“面动成体”,故本选项错误.故选B.【点睛】本题考查了点、线、面、体,准确认识生活实际中的现象是解题的关键.点动成线、线动成面、面动成体.6、C【解析】试题分析:121=232;131=319;15=344;191=45 344445,154191,1419,所以应在段上故选C考点:实数与数轴的关系7、C【解析】利用数
14、轴先判断出a、b的正负情况以及它们绝对值的大小,然后再进行比较即可【详解】解:由a、b在数轴上的位置可知:a1,b1,且|a|b|,a+b1,ab1,ab1,ab1故选:C8、D【解析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k,即可求得答案【详解】点A(-4,2),B(-6,-4),以原点O为位似中心,相似比为,把ABO缩小,点A的对应点A的坐标是:(-2,1)或(2,-1)故选D【点睛】此题考查了位似图形与坐标的关系此题比较简单,注意在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标比等
15、于k9、A【解析】分析:根据主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形,从而得出该几何体的左视图详解:该几何体的左视图是:故选A点睛:本题考查了学生的思考能力和对几何体三种视图的空间想象能力10、A【解析】试题分析:0.001219=1.219101故选A考点:科学记数法表示较小的数11、A【解析】由题意可得:APE和PCF都是等腰直角三角形AE=PE,PF=CF,那么矩形PEBF的周长等于2个正方形的边长则y=2x,为正比例函数故选A12、D【解析】直接利用三角板的特点,结合平行线的性质得出BDE=45,进而得出答案【详解】解:由题意可得:EDF=30,ABC=45,D
16、ECB,BDE=ABC=45,BDF=45-30=15故选D【点睛】此题主要考查了平行线的性质,根据平行线的性质得出BDE的度数是解题关键二、填空题:(本大题共6个小题,每小题4分,共24分)13、2【解析】【分析】根据新定义可得出关于x的一元一次不等式,解之取其中的正整数即可得出结论【详解】3x=3x3+x22,x,x为正整数,x=2,故答案为:2【点睛】本题考查一元一次不等式的整数解以及实数的运算,通过解不等式找出x是解题的关键14、 (1,0) 【解析】分析:由于C、D是定点,则CD是定值,如果的周长最小,即有最小值为此,作点D关于x轴的对称点D,当点E在线段CD上时的周长最小详解:如图
17、,作点D关于x轴的对称点D,连接CD与x轴交于点E,连接DE.若在边OA上任取点E与点E不重合,连接CE、DE、DE由DE+CE=DE+CECD=DE+CE=DE+CE,可知CDE的周长最小,在矩形OACB中,OA=3,OB=4,D为OB的中点,BC=3,DO=DO=2,DB=6,OEBC, RtDOERtDBC,有 OE=1,点E的坐标为(1,0).故答案为:(1,0).点睛:考查轴对称-最短路线问题, 坐标与图形性质,相似三角形的判定与性质等,找出点E的位置是解题的关键.15、1【解析】方程常数项移到右边,两边加上25配方得到结果,求出m与n的值即可【详解】解:x2+10x-11=0,x2
18、+10x=11,则x2+10x+25=11+25,即(x+5)2=36,m=5、n=36,m+n=1,故答案为1【点睛】此题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键16、【解析】连接CD,根据题意可得DCEBDF,阴影部分的面积等于扇形的面积减去BCD的面积【详解】解:连接CD,作DMBC,DNACCA=CB,ACB=90,点D为AB的中点,DC=AB=1,四边形DMCN是正方形,DM=则扇形FDE的面积是:CA=CB,ACB=90,点D为AB的中点,CD平分BCA,又DMBC,DNAC,DM=DN,GDH=MDN=90,GDM=HDN,则在DMG和DNH中, ,DMG
19、DNH(AAS),S四边形DGCH=S四边形DMCN=则阴影部分的面积是: 故答案为:【点睛】本题考查了三角形的全等的判定与扇形的面积的计算的综合题,正确证明DMGDNH,得到S四边形DGCH=S四边形DMCN是关键17、k5且k1【解析】试题解析:关于x的一元二次方程有两个不相等的实数根, 解得:且 故答案为且18、【解析】由题意可知一共有6种可能,经过西流湾大桥的路线有2种可能,根据概率公式计算即可【详解】解:由题意可知一共有6种可能,经过西流湾大桥的路线有2种可能,所以恰好选到经过西流湾大桥的路线的概率=故答案为【点睛】本题考查的是用列表法或画树状图法求概率注意列表法或画树状图法可以不重
20、复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件注意概率=所求情况数与总情况数之比三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)证明见解析;证明见解析;(2),证明见解析【解析】(1)利用矩形的性质,结合已知条件可证PMNPDF,则可证得结论;由勾股定理可求得DM=DP,利用可求得MN=DF,则可证得结论;(2)过点P作PM1PD,PM1交AD边于点M1,则可证得PM1NPDF,则可证得M1N=DF,同(1)的方法可证得结论【详解】解:(1)四边形ABCD是矩形,ADC=90又DE平分ADC,ADE=E
21、DC=45;PMPD,DMP=45,DP=MPPMPD,PFPN,MPN+NPD=NPD+DPF=90,MPN=DPF在PMN和PDF中, ,PMNPDF(ASA),PN=PF,MN=DF;PMPD,DP=MP,DM2=DP2+MP2=2DP2,DM=DP又DM=DN+MN,且由可得MN=DF,DM=DN+DF,DF+DN=DP;(2)理由如下: 过点P作PM1PD,PM1交AD边于点M1,如图,四边形ABCD是矩形,ADC=90又DE平分ADC,ADE=EDC=45;PM1PD,DM1P=45,DP=M1P,PDF=PM1N=135,同(1)可知M1PN=DPF在PM1N和PDF中,PM1N
22、PDF(ASA),M1N=DF,由勾股定理可得:=DP2+M1P2=2DP2,DM1DPDM1=DNM1N,M1N=DF,DM1=DNDF,DNDF=DP【点睛】本题为四边形的综合应用,涉及矩形的性质、等腰直角三角形的性质、全等三角形的判定和性质、勾股定理等知识在每个问题中,构造全等三角形是解题的关键,注意勾股定理的应用本题考查了知识点较多,综合性较强,难度适中20、()D(3+,3);()当BB=时,四边形MBND是菱形,理由见解析;()P()【解析】()如图中,作DHBC于H首先求出点D坐标,再求出CC的长即可解决问题;()当BB=时,四边形MBND是菱形首先证明四边形MBND是平行四边形
23、,再证明BB=BC即可解决问题;()在ABP中,由三角形三边关系得,APAB+BP,推出当点A,B,P三点共线时,AP最大.【详解】()如图中,作DHBC于H,AOB是等边三角形,DCOA,DCB=AOB=60,CDB=A=60,CDB是等边三角形,CB=2,DHCB,CH=HB=,DH=3,D(6,3),CB=3,CC=23,DD=CC=23,D(3+,3)()当BB=时,四边形MBND是菱形,理由:如图中,ABC是等边三角形,ABO=60,ABB=180ABO=120,BN是ACC的角平分线,NBB=ABB=60=DCB,DCBN,ABBD四边形MBND是平行四边形,MEC=MCE=60,
24、NCC=NCC=60,MCB和NBB是等边三角形,MC=CE,NC=CC,BC=2,四边形MBND是菱形,BN=BM,BB=BC=;()如图连接BP,在ABP中,由三角形三边关系得,APAB+BP,当点A,B,P三点共线时,AP最大,如图中,在DBE中,由P为DE的中点,得APDE,PD=,CP=3,AP=6+3=9,在RtAPD中,由勾股定理得,AD=2此时P(,)【点睛】此题是四边形综合题,主要考查了平行四边形的判定和性质,菱形的性质,平移和旋转的性质,等边三角形的判定和性质,勾股定理,解(2)的关键是四边形MCND是平行四边形,解(3)的关键是判断出点A,C,P三点共线时,AP最大21、
25、(1),;(2)4;(3)【解析】(1)连接CB,CD,依据四边形BODC是正方形,即可得到B(1,2),点C(2,2),利用待定系数法即可得到反比例函数和一次函数的解析式;(2)依据OB=2,点A的横坐标为-4,即可得到AOB的面积为:24=4;(3)依据数形结合思想,可得当x1时,k1x+b1的解集为:-4x1【详解】解:(1)如图,连接,C与轴,轴相切于点D,且半径为,四边形是正方形,点,把点代入反比例函数中,解得:,反比例函数解析式为:,点在反比例函数上,把代入中,可得,把点和分别代入一次函数中,得出:,解得:,一次函数的表达式为:;(2)如图,连接,点的横坐标为,的面积为:;(3)由
26、,根据图象可知:当时,的解集为:【点睛】本题考查了反比例函数与一次函数的交点依据待定系数法求函数解析式,解题的关键是求出C,B点坐标22、(1)反比例函数表达式为,正比例函数表达式为;(2),.【解析】试题分析:(1)将点A坐标(2,-2)分别代入y=kx、y=求得k、m的值即可;(2)由题意得平移后直线解析式,即可知点B坐标,联立方程组求解可得第四象限内的交点C得坐标,可将ABC的面积转化为OBC的面积试题解析:()把代入反比例函数表达式,得,解得,反比例函数表达式为,把代入正比例函数,得,解得,正比例函数表达式为()直线由直线向上平移个单位所得,直线的表达式为,由,解得或,在第四象限,连接
27、,23、公路的宽为20.5米【解析】作CDAE,设CD=x米,由CBD=45知BD=CD=x,根据tanCAD=,可得=,解之即可【详解】解:如图,过点C作CDAE于点D,设公路的宽CD=x米,CBD=45,BD=CD=x,在RtACD中,CAE=30,tanCAD=,即=,解得:x=20.5(米),答:公路的宽为20.5米【点睛】本题考查了直角三角形的应用,解答本题的关键是根据仰角构造直角三角形,利用三角函数解直角三角形24、1 【解析】直接利用特殊角的三角函数值和负指数幂的性质、零指数幂的性质、二次根式的性质分别化简得出答案【详解】原式=1+232+1=2+21=11【点睛】此题主要考查了
28、实数运算,正确化简各数是解题关键25、 (1)抛物线的解析式为:y=x1+x+1(1)存在,P1(,2),P1(,),P3(,)(3)当点E运动到(1,1)时,四边形CDBF的面积最大,S四边形CDBF的面积最大=【解析】试题分析:(1)将点A、C的坐标分别代入可得二元一次方程组,解方程组即可得出m、n的值;(1)根据二次函数的解析式可得对称轴方程,由勾股定理求出CD的值,以点C为圆心,CD为半径作弧交对称轴于P1;以点D为圆心CD为半径作圆交对称轴于点P1,P3;作CH垂直于对称轴与点H,由等腰三角形的性质及勾股定理就可以求出结论;(3)由二次函数的解析式可求出B点的坐标,从而可求出BC的解
29、析式,从而可设设E点的坐标,进而可表示出F的坐标,由四边形CDBF的面积=SBCD+SCEF+SBEF可求出S与a的关系式,由二次函数的性质就可以求出结论试题解析:(1)抛物线y=x1+mx+n经过A(1,0),C(0,1)解得:,抛物线的解析式为:y=x1+x+1;(1)y=x1+x+1,y=(x)1+,抛物线的对称轴是x=OD=C(0,1),OC=1在RtOCD中,由勾股定理,得CD=CDP是以CD为腰的等腰三角形,CP1=CP1=CP3=CD作CHx轴于H,HP1=HD=1,DP1=2P1(,2),P1(,),P3(,);(3)当y=0时,0=x1+x+1x1=1,x1=2,B(2,0)
30、设直线BC的解析式为y=kx+b,由图象,得,解得:,直线BC的解析式为:y=x+1如图1,过点C作CMEF于M,设E(a,a+1),F(a,a1+a+1),EF=a1+a+1(a+1)=a1+1a(0x2)S四边形CDBF=SBCD+SCEF+SBEF=BDOC+EFCM+EFBN,=+a(a1+1a)+(2a)(a1+1a),=a1+2a+(0x2)=(a1)1+a=1时,S四边形CDBF的面积最大=,E(1,1)考点:1、勾股定理;1、等腰三角形的性质;3、四边形的面积;2、二次函数的最值26、(1);(2)【解析】分析:(1)直接利用概率公式求解;(2)画树状图展示所有8种等可能的结果
31、数,再找出甲至少胜一局的结果数,然后根据概率公式求详解:(1)甲队最终获胜的概率是;(2)画树状图为:共有8种等可能的结果数,其中甲至少胜一局的结果数为7,所以甲队最终获胜的概率=点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率27、 (1)见解析;(1)1【解析】(1)根据角平分线的作图可得;(1)由等腰三角形的三线合一,结合E为AB边的中点证EF为ABD的中位线可得【详解】(1)如图,射线CF即为所求;(1)CAD=CDA,AC=DC,即CAD为等腰三角形;又CF是顶角ACD的平分线,CF是底边AD的中线,即F为AD的中点,E是AB的中点,EF为ABD的中位线,EF=BD=1【点睛】本题主要考查作图-基本作图和等腰三角形的性质、中位线定理,熟练掌握等腰三角形的性质、中位线定理是解题的关键