四川省宜宾第三中学2023届高三第二次联考数学试卷含解析.doc

上传人:lil****205 文档编号:87997289 上传时间:2023-04-19 格式:DOC 页数:19 大小:1.90MB
返回 下载 相关 举报
四川省宜宾第三中学2023届高三第二次联考数学试卷含解析.doc_第1页
第1页 / 共19页
四川省宜宾第三中学2023届高三第二次联考数学试卷含解析.doc_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《四川省宜宾第三中学2023届高三第二次联考数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《四川省宜宾第三中学2023届高三第二次联考数学试卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回

2、。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1不等式组表示的平面区域为,则( )A,B,C,D,2执行如图所示的程序框图,则输出的结果为( )ABCD3将函数的图象向左平移个单位长度,得到的函数为偶函数,则的值为()ABCD4点在曲线上,过作轴垂线,设与曲线交于点,且点的纵坐标始终为0,则称点为曲线上的“水平黄金点”,则曲线上的“水平黄金点”的个数为( )A0B1C2D35已知在中,角的对边分别为,若函数存在极值,则角的取值范围是( )ABCD6关于圆周率,数学发展史上出现过许多很有创意的求法,如著名的浦丰实验和查理斯实验受其启发,我

3、们也可以通过设计下面的实验来估计的值:先请全校名同学每人随机写下一个都小于的正实数对;再统计两数能与构成钝角三角形三边的数对的个数;最后再根据统计数估计的值,那么可以估计的值约为( )ABCD7已知平面向量满足与的夹角为,且,则实数的值为( )ABCD8在平行六面体中,M为与的交点,若,,则与相等的向量是( )ABCD9已知命题:是“直线和直线互相垂直”的充要条件;命题:函数的最小值为4. 给出下列命题:;,其中真命题的个数为( )A1B2C3D410已知某超市2018年12个月的收入与支出数据的折线图如图所示:根据该折线图可知,下列说法错误的是( )A该超市2018年的12个月中的7月份的收

4、益最高B该超市2018年的12个月中的4月份的收益最低C该超市2018年1-6月份的总收益低于2018年7-12月份的总收益D该超市2018年7-12月份的总收益比2018年1-6月份的总收益增长了90万元11祖暅原理:“幂势既同,则积不容异”.意思是说:两个同高的几何体,如在等高处的截面积恒相等,则体积相等.设、为两个同高的几何体,、的体积不相等,、在等高处的截面积不恒相等.根据祖暅原理可知,是的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件12九章算术是我国古代数学名著,书中有如下问题:“今有勾六步,股八步,问勾中容圆,径几何?”其意思为:“已知直角三角形两直角边长

5、分别为6步和8步,问其内切圆的直径为多少步?”现从该三角形内随机取一点,则此点取自内切圆的概率是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13边长为2的菱形中,与交于点O,E是线段的中点,的延长线与相交于点F,若,则_.14现有5人要排成一排照相,其中甲与乙两人不相邻,且甲不站在两端,则不同的排法有_种.(用数字作答)15如图,为测量出高,选择和另一座山的山顶为测量观测点,从点测得点的仰角,点的仰角以及;从点测得已知山高,则山高_16已知是抛物线的焦点,过作直线与相交于两点,且在第一象限,若,则直线的斜率是_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17

6、(12分)在中,角所对的边分别是,且.(1)求;(2)若,求.18(12分)在直角坐标系中,圆的参数方程为(为参数),以为极点,轴的非负半轴为极轴建立极坐标系.(1)求圆的极坐标方程;(2)直线的极坐标方程是,射线与圆的交点为、,与直线的交点为,求线段的长.19(12分)某公司为了鼓励运动提高所有用户的身体素质,特推出一款运动计步数的软件,所有用户都可以通过每天累计的步数瓜分红包,大大增加了用户走步的积极性,所以该软件深受广大用户的欢迎.该公司为了研究“日平均走步数和性别是否有关”,统计了2019年1月份所有用户的日平均步数,规定日平均步数不少于8000的为“运动达人”,步数在8000以下的为

7、“非运动达人”,采用按性别分层抽样的方式抽取了100个用户,得到如下列联表:运动达人非运动达人总计男3560女26总计100(1)(i)将列联表补充完整;(ii)据此列联表判断,能否有的把握认为“日平均走步数和性别是否有关”?(2)将频率视作概率,从该公司的所有人“运动达人”中任意抽取3个用户,求抽取的用户中女用户人数的分布列及期望.附:20(12分)如图,设点为椭圆的右焦点,圆过且斜率为的直线交圆于两点,交椭圆于点两点,已知当时,(1)求椭圆的方程.(2)当时,求的面积.21(12分)已知函数.(1)求不等式的解集;(2)若关于的不等式在区间内无解,求实数的取值范围.22(10分)已知数列的

8、各项均为正数,为其前n项和,对于任意的满足关系式.(1)求数列的通项公式;(2)设数列的通项公式是,前n项和为,求证:对于任意的正数n,总有.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据题意,分析不等式组的几何意义,可得其表示的平面区域,设,分析的几何意义,可得的最小值,据此分析选项即可得答案.【详解】解:根据题意,不等式组其表示的平面区域如图所示,其中 ,设,则,的几何意义为直线在轴上的截距的2倍,由图可得:当过点时,直线在轴上的截距最大,即,当过点原点时,直线在轴上的截距最小,即,故AB错误;设,则的几何意

9、义为点与点连线的斜率,由图可得最大可到无穷大,最小可到无穷小,故C错误,D正确;故选:D.【点睛】本题考查本题考查二元一次不等式的性质以及应用,关键是对目标函数几何意义的认识,属于基础题.2、D【解析】循环依次为 直至结束循环,输出,选D.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.3、D【解析】利用三角函数的图象变换求得函数的解析式,再根据三角函数的性质,即可求解,得到答案【详解】将将函数的图象向左平移个单位长度

10、,可得函数又由函数为偶函数,所以,解得,因为,当时,故选D【点睛】本题主要考查了三角函数的图象变换,以及三角函数的性质的应用,其中解答中熟记三角函数的图象变换,合理应用三角函数的图象与性质是解答的关键,着重考查了推理与运算能力,属于基础题4、C【解析】设,则,则,即可得,设,利用导函数判断的零点的个数,即为所求.【详解】设,则,所以,依题意可得,设,则,当时,则单调递减;当时,则单调递增,所以,且,有两个不同的解,所以曲线上的“水平黄金点”的个数为2.故选:C【点睛】本题考查利用导函数处理零点问题,考查向量的坐标运算,考查零点存在性定理的应用.5、C【解析】求出导函数,由有不等的两实根,即可得

11、不等关系,然后由余弦定理可及余弦函数性质可得结论【详解】,.若存在极值,则,又.又故选:C【点睛】本题考查导数与极值,考查余弦定理掌握极值存在的条件是解题关键6、D【解析】由试验结果知对01之间的均匀随机数 ,满足,面积为1,再计算构成钝角三角形三边的数对,满足条件的面积,由几何概型概率计算公式,得出所取的点在圆内的概率是圆的面积比正方形的面积,即可估计的值【详解】解:根据题意知,名同学取对都小于的正实数对,即,对应区域为边长为的正方形,其面积为,若两个正实数能与构成钝角三角形三边,则有,其面积;则有,解得故选:【点睛】本题考查线性规划可行域问题及随机模拟法求圆周率的几何概型应用问题. 线性规

12、划可行域是一个封闭的图形,可以直接解出可行域的面积;求解与面积有关的几何概型时,关键是弄清某事件对应的面积,必要时可根据题意构造两个变量,把变量看成点的坐标,找到试验全部结果构成的平面图形,以便求解.7、D【解析】由已知可得,结合向量数量积的运算律,建立方程,求解即可.【详解】依题意得由,得即,解得.故选:.【点睛】本题考查向量的数量积运算,向量垂直的应用,考查计算求解能力,属于基础题.8、D【解析】根据空间向量的线性运算,用作基底表示即可得解.【详解】根据空间向量的线性运算可知因为,,则即,故选:D.【点睛】本题考查了空间向量的线性运算,用基底表示向量,属于基础题.9、A【解析】先由两直线垂

13、直的条件判断出命题p的真假,由基本不等式判断命题q的真假,从而得出p,q的非命题的真假,继而判断复合命题的真假,可得出选项.【详解】已知对于命题,由得,所以命题为假命题;关于命题,函数,当时,当即时,取等号,当时,函数没有最小值,所以命题为假命题.所以和是真命题,所以为假命题,为假命题,为假命题,为真命题,所以真命题的个数为1个.故选:A.【点睛】本题考查直线的垂直的判定和基本不等式的应用,以及复合命题的真假的判断,注意运用基本不等式时,满足所需的条件,属于基础题.10、D【解析】用收入减去支出,求得每月收益,然后对选项逐一分析,由此判断出说法错误的选项.【详解】用收入减去支出,求得每月收益(

14、万元),如下表所示:月份123456789101112收益203020103030604030305030所以月收益最高,A选项说法正确;月收益最低,B选项说法正确;月总收益万元,月总收益万元,所以前个月收益低于后六个月收益,C选项说法正确,后个月收益比前个月收益增长万元,所以D选项说法错误.故选D.【点睛】本小题主要考查图表分析,考查收益的计算方法,属于基础题.11、A【解析】由题意分别判断命题的充分性与必要性,可得答案.【详解】解:由题意,若、的体积不相等,则、在等高处的截面积不恒相等,充分性成立;反之,、在等高处的截面积不恒相等,但、的体积可能相等,例如是一个正放的正四面体,一个倒放的正

15、四面体,必要性不成立,所以是的充分不必要条件,故选:A.【点睛】本题主要考查充分条件、必要条件的判定,意在考查学生的逻辑推理能力.12、C【解析】利用直角三角形三边与内切圆半径的关系求出半径,再分别求出三角形和内切圆的面积,根据几何概型的概率计算公式,即可求解.【详解】由题意,直角三角形的斜边长为,利用等面积法,可得其内切圆的半径为,所以向次三角形内投掷豆子,则落在其内切圆内的概率为.故选:C.【点睛】本题主要考查了面积比的几何概型的概率的计算问题,其中解答中熟练应用直角三角形的性质,求得其内切圆的半径是解答的关键,着重考查了推理与运算能力.二、填空题:本题共4小题,每小题5分,共20分。13

16、、【解析】取基向量,然后根据三点共线以及向量加减法运算法则将,表示为基向量后再相乘可得【详解】如图:设,又,且存在实数使得,故答案为:【点睛】本题考查了平面向量数量积的性质及其运算,属中档题14、36【解析】先优先考虑甲、乙两人不相邻的排法,在此条件下,计算甲不排在两端的排法,最后相减即可得到结果.【详解】由题意得5人排成一排,甲、乙两人不相邻,有种排法,其中甲排在两端,有种排法,则6人排成一排,甲、乙两人不相邻,且甲不排在两端,共有(种)排法.所以本题答案为36.【点睛】排列、组合问题由于其思想方法独特,计算量庞大,对结果的检验困难,所以在解决这类问题时就要遵循一定的解题原则,如特殊元素、位

17、置优先原则、先取后排原则、先分组后分配原则、正难则反原则等,只有这样我们才能有明确的解题方向.同时解答组合问题时必须心思细腻、考虑周全,这样才能做到不重不漏,正确解题.15、1【解析】试题分析:在中,,,在中,由正弦定理可得即解得,在中,故答案为1考点:正弦定理的应用16、【解析】作出准线,过作准线的垂线,利用抛物线的定义把抛物线点到焦点的距离转化为点到准线的距离,利用平面几何知识计算出直线的斜率【详解】设是准线,过作于,过作于,过作于,如图,则,直线斜率为故答案为:【点睛】本题考查抛物线的焦点弦问题,解题关键是利用抛物线的定义,把抛物线上点到焦点距离转化为该点到准线的距离,用平面几何方法求解

18、三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据正弦定理到,得到答案.(2)计算,再利用余弦定理计算得到答案.【详解】(1)由,可得,因为,所以,所以.(2),又因为,所以.因为,所以,即.【点睛】本题考查了正弦定理和余弦定理,意在考查学生的计算能力.18、(1)(2)【解析】(1)首先将参数方程转化为普通方程再根据公式化为极坐标方程即可;(2)设,由,即可求出,则计算可得;【详解】解:(1)圆的参数方程(为参数)可化为,即圆的极坐标方程为.(2)设,由,解得.设,由,解得.,.【点睛】本题考查了利用极坐标方程求曲线的交点弦长,考查了推理能力与

19、计算能力,属于中档题19、(1)(i)填表见解析(ii)没有的把握认为“日平均走步数和性别是否有关”(2)详见解析【解析】(1)(i)由已给数据可完成列联表,(ii)计算出后可得;(2)由列联表知从运动达人中抽取1个用户为女用户的概率为,的取值为,由二项分布概率公式计算出各概率得分布列,由期望公式计算期望【详解】解(1)(i)运动达人非运动达人总计男352560女142640总计4951100(ii)由列联表得所以没有的把握认为“日平均走步数和性别是否有关”(2)由列联表知从运动达人中抽取1个用户为女用户的概率为,.易知所以的分布列为0123【点睛】本题考查列联表,考查独立性检验,考查随机变量

20、的概率分布列和期望属于中档题本题难点在于认识到20、(1)(2)【解析】(1)先求出圆心到直线的距离为,再根据得到,解之即得a的值,再根据c=1求出b的值得到椭圆的方程.(2)先求出,再求得的面积.【详解】(1)因为直线过点,且斜率.所以直线的方程为,即,所以圆心到直线的距离为, 又因为,圆的半径为,所以,即,解之得,或(舍去).所以,所以所示椭圆的方程为 .(2)由(1)得,椭圆的右准线方程为,离心率,则点到右准线的距离为,所以,即,把代入椭圆方程得,因为直线的斜率,所以, 因为直线经过和,所以直线的方程为,联立方程组得,解得或,所以, 所以的面积.【点睛】本题主要考查直线和圆、椭圆的位置关

21、系,考查椭圆的方程的求法,考查三角形面积的计算,意在考查学生对这些知识的掌握水平和分析推理计算能力.21、(1);(2).【解析】(1)只需分,三种情况讨论即可;(2)在区间上恒成立,转化为,只需求出即可.【详解】(1)当时,此时不等式无解;当时,由得;当时,由得,综上,不等式的解集为;(2)依题意,在区间上恒成立,则,当时,;当时,所以当时,由得或,所以实数的取值范围为.【点睛】本题考查绝对值不等式的解法、不等式恒成立问题,考查学生分类讨论与转化与化归的思想,是一道基础题.22、(1)(2)证明见解析【解析】(1)根据公式得到,计算得到答案.(2),根据裂项求和法计算得到,得到证明.【详解】(1)由已知得时,故.故数列为等比数列,且公比.又当时,.(2).【点睛】本题考查了数列通项公式和证明数列不等式,意在考查学生对于数列公式方法的综合应用.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁