《四川省自贡市富顺三中学、代寺区2023届中考冲刺卷数学试题含解析.doc》由会员分享,可在线阅读,更多相关《四川省自贡市富顺三中学、代寺区2023届中考冲刺卷数学试题含解析.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1下列各数中最小的是( )A0B1CD2计算6m6(-2m2)3的结果为()ABCD3一组数据:3,2,5,3,7,5,x,它们的众数为5,则这组数据的中位数是()A
2、2B3C5D74已知O的半径为3,圆心O到直线L的距离为2,则直线L与O的位置关系是()A相交B相切C相离D不能确定5点A 为数轴上表示-2的动点,当点A 沿数轴移动4个单位长到B时,点B所表示的实数是( )A1 B-6 C2或-6 D不同于以上答案6下列计算正确的是()A(8)8=0B3+=3C(3b)2=9b2Da6a2=a37如图,已知O的半径为5,AB是O的弦,AB=8,Q为AB中点,P是圆上的一点(不与A、B重合),连接PQ,则PQ的最小值为()A1B2C3D88碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸,我国某物理所研究组已研制出直径为0.5纳米的碳纳米管,1纳米0.
3、000000001米,则0.5纳米用科学记数法表示为()A0.5109米B5108米C5109米D51010米9如图,在平行四边形ABCD中,AC与BD相交于O,且AO=BD=4,AD=3,则BOC的周长为()A9B10C12D1410有6个相同的立方体搭成的几何体如图所示,则它的主视图是( )ABCD二、填空题(共7小题,每小题3分,满分21分)11比较大小:_112已知x=2是一元二次方程x22mx+4=0的一个解, 则m的值为 13如图,在平面直角坐标系中,点A(0,6),点B在x轴的负半轴上,将线段AB绕点A逆时针旋转90至AB,点M是线段AB的中点,若反比例函数y=(k0)的图象恰好
4、经过点B、M,则k=_14如图,矩形ABCD,AB=2,BC=1,将矩形ABCD绕点A顺时针旋转90得矩形AEFG,连接CG、EG,则CGE=_15计算3结果等于_16有一个计算程序,每次运算都是把一个数先乘2,再除以它与1的和,多次重复进行这种运算的过程如下:则第n次的运算结果是_(用含字母x和n的代数式表示)17如图,直线yk1xb与双曲线交于A、B两点,其横坐标分别为1和5,则不等式k1xb的解集是三、解答题(共7小题,满分69分)18(10分) 如图,在平面直角坐标系中,直线y12x+b与坐标轴交于A、B两点,与双曲线 (x0)交于点C,过点C作CDx轴,垂足为D,且OAAD,点B的坐
5、标为(0,2)(1)求直线y12x+b及双曲线(x0)的表达式;(2)当x0时,直接写出不等式的解集;(3)直线x3交直线y12x+b于点E,交双曲线(x0)于点F,求CEF的面积19(5分)如图所示,某校九年级(3)班的一个学习小组进行测量小山高度的实践活动部分同学在山脚A点处测得山腰上一点D的仰角为30,并测得AD的长度为180米另一部分同学在山顶B点处测得山脚A点的俯角为45,山腰D点的俯角为60,请你帮助他们计算出小山的高度BC(计算过程和结果都不取近似值)20(8分)如图,AB是O的直径,点E是上的一点,DBC=BED(1)求证:BC是O的切线;(2)已知AD=3,CD=2,求BC的
6、长21(10分)已知A、B、C三地在同一条路上,A地在B地的正南方3千米处,甲、乙两人分别从A、B两地向正北方向的目的地C匀速直行,他们分别和A地的距离s(千米)与所用的时间t(小时)的函数关系如图所示(1)图中的线段l1是 (填“甲”或“乙”)的函数图象,C地在B地的正北方向 千米处;(2)谁先到达C地?并求出甲乙两人到达C地的时间差;(3)如果速度慢的人在两人相遇后立刻提速,并且比先到者晚1小时到达C地,求他提速后的速度.22(10分)阅读材料:对于线段的垂直平分线我们有如下结论:到线段两个端点距离相等的点在线段的垂直平分线上即如图,若PAPB,则点P在线段AB的垂直平分线上请根据阅读材料
7、,解决下列问题:如图,直线CD是等边ABC的对称轴,点D在AB上,点E是线段CD上的一动点(点E不与点C、D重合),连结AE、BE,ABE经顺时针旋转后与BCF重合(I)旋转中心是点 ,旋转了 (度);(II)当点E从点D向点C移动时,连结AF,设AF与CD交于点P,在图中将图形补全,并探究APC的大小是否保持不变?若不变,请求出APC的度数;若改变,请说出变化情况23(12分)如图,ABC内接于O,过点C作BC的垂线交O于D,点E在BC的延长线上,且DECBAC求证:DE是O的切线;若ACDE,当AB8,CE2时,求O直径的长24(14分)如图,已知是直角坐标平面上三点.将先向右平移3个单位
8、,再向上平移3个单位,画出平移后的图形;以点为位似中心,位似比为2,将放大,在轴右侧画出放大后的图形;填空:面积为 .参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】根据任意两个实数都可以比较大小正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小即可判断【详解】01则最小的数是故选:D【点睛】本题考查了实数大小的比较,理解任意两个实数都可以比较大小正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小是关键2、D【解析】分析:根据幂的乘方计算法则求出除数,然后根据同底数幂的除法法则得出答案详解:原式=,
9、故选D点睛:本题主要考查的是幂的计算法则,属于基础题型明白幂的计算法则是解决这个问题的关键3、C【解析】分析:众数是指一组数据中出现次数最多的那个数据,一组数据可以有多个众数,也可以没有众数;中位数是指将数据按大小顺序排列起来形成一个数列,居于数列中间位置的那个数据根据定义即可求出答案详解:众数为5, x=5, 这组数据为:2,3,3,5,5,5,7, 中位数为5, 故选C点睛:本题主要考查的是众数和中位数的定义,属于基础题型理解他们的定义是解题的关键4、A【解析】试题分析:根据圆O的半径和,圆心O到直线L的距离的大小,相交:dr;相切:d=r;相离:dr;即可选出答案解:O的半径为3,圆心O
10、到直线L的距离为2,32,即:dr,直线L与O的位置关系是相交故选A考点:直线与圆的位置关系5、C【解析】解:点A为数轴上的表示-1的动点,当点A沿数轴向左移动4个单位长度时,点B所表示的有理数为-1-4=-6;当点A沿数轴向右移动4个单位长度时,点B所表示的有理数为-1+4=1故选C点睛:注意数的大小变化和平移之间的规律:左减右加与点A的距离为4个单位长度的点B有两个,一个向左,一个向右6、C【解析】选项A,原式=-16;选项B,不能够合并;选项C,原式=;选项D,原式=.故选C.7、B【解析】连接OP、OA,根据垂径定理求出AQ,根据勾股定理求出OQ,计算即可【详解】解:由题意得,当点P为
11、劣弧AB的中点时,PQ最小,连接OP、OA,由垂径定理得,点Q在OP上,AQ=AB=4,在RtAOB中,OQ=3,PQ=OP-OQ=2,故选:B【点睛】本题考查的是垂径定理、勾股定理,掌握垂径定理的推论是解题的关键8、D【解析】解:0.5纳米=0.50.000 000 001米=0.000 000 000 5米=51010米故选D点睛:在负指数科学计数法 中,其中 ,n等于第一个非0数字前所有0的个数(包括下数点前面的0).9、A【解析】利用平行四边形的性质即可解决问题.【详解】四边形ABCD是平行四边形,AD=BC=3,OD=OB=2,OA=OC=4,OBC的周长=3+2+4=9,故选:A【
12、点睛】题考查了平行四边形的性质和三角形周长的计算,平行四边形的性质有:平行四边形对边平行且相等;平行四边形对角相等,邻角互补;平行四边形对角线互相平分.10、C【解析】试题分析:根据主视图是从正面看得到的图形,可得答案解:从正面看第一层三个小正方形,第二层左边一个小正方形,右边一个小正方形故选C考点:简单组合体的三视图二、填空题(共7小题,每小题3分,满分21分)11、【解析】先将1化为根号的形式,根据被开方数越大值越大即可求解【详解】解: , ,故答案为【点睛】本题考查实数大小的比较,比较大小时,常用的方法有:作差法,作商法,如果有一个是二次根式,要把另一个也化为二次根式的形式,根据被开方数
13、的大小进行比较12、1【解析】试题分析:直接把x=1代入已知方程就得到关于m的方程,再解此方程即可试题解析:x=1是一元二次方程x1-1mx+4=0的一个解,4-4m+4=0,m=1考点:一元二次方程的解13、12【解析】根据题意可以求得点B的横坐标,然后根据反比例函数y=(k0)的图象恰好经过点B、M,从而可以求得k的值【详解】解:作BCy轴于点C,如图所示,BAB=90,AOB=90,AB=AB,BAO+ABO=90,BAO+BAC=90,ABO=BAC,ABOBAC,AO=BC,点A(0,6),BC=6,设点B的坐标为(6,),点M是线段AB的中点,点A(0,6),点M的坐标为(3,),
14、反比例函数y=(k0)的图象恰好经过点M,解得,k=12,故答案为:12.【点睛】本题考查反比例函数图象上点的坐标特征、旋转的性质,解答本题的关键是明确题意,利用数形结合的思想解答14、45【解析】试题解析:如图,连接CE,AB=2,BC=1,DE=EF=1,CD=GF=2,在CDE和GFE中CDEGFE(SAS),CE=GE,CED=GEF,故答案为15、1【解析】根据二次根式的乘法法则进行计算即可.【详解】 故答案为:1【点睛】考查二次根式的乘法,掌握二次根式乘法的运算法则是解题的关键.16、【解析】试题分析:根据题意得;根据以上规律可得:=.考点:规律题.17、2x1或x1【解析】不等式
15、的图象解法,平移的性质,反比例函数与一次函数的交点问题,对称的性质不等式k1xb的解集即k1xb的解集,根据不等式与直线和双曲线解析式的关系,可以理解为直线yk1xb在双曲线下方的自变量x的取值范围即可而直线yk1xb的图象可以由yk1xb向下平移2b个单位得到,如图所示根据函数图象的对称性可得:直线yk1xb和yk1xb与双曲线的交点坐标关于原点对称由关于原点对称的坐标点性质,直线yk1xb图象与双曲线图象交点A、B的横坐标为A、B两点横坐标的相反数,即为1,2由图知,当2x1或x1时,直线yk1xb图象在双曲线图象下方不等式k1xb的解集是2x1或x1三、解答题(共7小题,满分69分)18
16、、(1)直线解析式为y12x2,双曲线的表达式为y2 (x0);(2)0x2;(3)【解析】(1)将点B的代入直线y12x+b,可得b,则可以求得直线解析式;令y0可得A点坐标为(1,0),又因为OAAD,则D点坐标为(2,0),把x2代入直线解析式,可得y2,从而得到点C的坐标为(2,2),在把(2,2)代入双曲线y2 ,可得k4,则双曲线的表达式为y2 (x0).(2)由x的取值范围,结合图像可求得答案.(3)把x3代入y2函数,可得y ;把x3代入y1函数,可得y4,从而得到EF,由三角形的面积公式可得SCEF.【详解】解:(1)将点B的坐标(0,2)代入直线y12x+b,可得2b,直线
17、解析式为y12x2,令y0,则x1,A(1,0),OAAD,D(2,0),把x2代入y12x2,可得y2,点C的坐标为(2,2),把(2,2)代入双曲线y2 ,可得k224,双曲线的表达式为y2 (x0);(2)当x0时,不等式2x+b的解集为0x2;(3)把x3代入y2,可得y ;把x3代入y12x2,可得y4,EF4,SCEF(32),CEF的面积为【点睛】本题考察了一次函数和双曲线例函数的综合;熟练掌握由点求解析式是解题的关键;能够结合图形及三角形面积公式是解题的关键.19、米【解析】解:如图,过点D作DEAC于点E,作DFBC于点F,则有DEFC,DFECDEC=90,四边形DECF是
18、矩形,DE=FCHBA=BAC=45,BAD=BACDAE=4530=15又ABD=HBDHBA=6045=15,ADB是等腰三角形AD=BD=180(米)在RtAED中,sinDAE=sin30=,DE=180sin30=180=90(米),FC=90米,在RtBDF中,BDF=HBD=60,sinBDF=sin60=,BF=180sin60=180(米)BC=BF+FC=90+90=90(+1)(米)答:小山的高度BC为90(+1)米20、 (1)证明见解析(2)BC=【解析】(1)AB是O的直径,得ADB=90,从而得出BAD=DBC,即ABC=90,即可证明BC是O的切线;(2)可证明
19、ABCBDC,则,即可得出BC=【详解】(1)AB是O的切直径,ADB=90,又BAD=BED,BED=DBC,BAD=DBC,BAD+ABD=DBC+ABD=90,ABC=90,BC是O的切线;(2)解:BAD=DBC,C=C,ABCBDC,即BC2=ACCD=(AD+CD)CD=10,BC=考点:1.切线的判定;2.相似三角形的判定和性质.21、(1)乙;3;(2)甲先到达,到达目的地的时间差为小时;(3)速度慢的人提速后的速度为千米/小时.【解析】分析:(1)根据题意结合所给函数图象进行判断即可;(2)由所给函数图象中的信息先求出二人所对应的函数解析式,再由解析式结合图中信息求出二人到达
20、C地的时间并进行比较、判断即可得到本问答案;(3)根据图象中的信息结合(2)中的结论进行解答即可.详解:(1)由题意结合图象中的信息可知:图中线段l1是乙的图象;C地在B地的正北方6-3=3(千米)处.(2)甲先到达. 设甲的函数解析式为s=kt,则有4=t,s=4t.当s=6时,t=.设乙的函数解析式为s=nt+3,则有4=n+3,即n=1.乙的函数解析式为s=t+3.当s=6时,t=3. 甲、乙到达目的地的时间差为:(小时). (3)设提速后乙的速度为v千米/小时,相遇处距离A地4千米,而C地距A地6千米,相遇后需行2千米. 又原来相遇后乙行2小时才到达C地,乙提速后2千米应用时1.5小时
21、. 即,解得: ,答:速度慢的人提速后的速度为千米/小时.点睛:本题考查的是由函数图象中获取相关信息来解决问题的能力,解题的关键是结合题意弄清以下两点:(1)函数图象上点的横坐标和纵坐标各自所表示是实际意义;(2)图象中各关键点(起点、终点、交点和转折点)的实际意义.22、B 60 【解析】分析:(1)根据旋转的性质可得出结论;(2)根据旋转的性质可得BF=CF,则点F在线段BC的垂直平分线上,又由AC=AB,可得点A在线段BC的垂直平分线上,由AF垂直平分BC,即CQP=90,进而得出APC的度数.详解:(1)B,60;(2)补全图形如图所示; 的大小保持不变, 理由如下:设与交于点直线是等
22、边的对称轴, 经顺时针旋转后与重合 , 点在线段的垂直平分线上点在线段的垂直平分线上垂直平分,即 点睛:本题考查了旋转的性质,解题的关键是熟记旋转的性质及垂直平分线的性质,注意只证明一点是不能说明这条直线是垂直平分线的.23、(1)见解析;(2)O直径的长是4【解析】(1)先判断出BD是圆O的直径,再判断出BDDE,即可得出结论;(2)先判断出ACBD,进而求出BC=AB=8,进而判断出BDCBED,求出BD,即可得出结论【详解】证明:(1)连接BD,交AC于F,DCBE,BCDDCE90,BD是O的直径,DEC+CDE90,DECBAC,BAC+CDE90,弧BC=弧BC,BACBDC,BD
23、C+CDE90,BDDE,DE是O切线;解:(2)ACDE,BDDE,BDACBD是O直径,AFCF,ABBC8,BDDE,DCBE,BCDBDE90,DBCEBD,BDCBED,BD2BCBE81080,BD4即O直径的长是4【点睛】此题主要考查圆周角定理,垂径定理,相似三角形的判定和性质,切线的判定和性质,第二问中求出BC=8是解本题的关键24、(1)详见解析;(2)详见解析;(3).【解析】(1)分别画出A、B、C三点的对应点即可解决问题;(2)由(1)得各顶点的坐标,然后利用位似图形的性质,即可求得各点的坐标,然后在图中作出位似三角形即可(3)求得所在矩形的面积减去三个三角形的面积即可.【详解】(1)如图,即为所求作;(2)如图,即为所求作;(3)面积=44-24-22-24=6.【点睛】本题主要考查了利用平移变换作图、位似作图以及求三角形的面积,作图时要先找到图形的关键点,把这几个关键点按平移的方向和距离确定对应点后,再顺序连接对应点即可得到平移后的图形.