《四川省南充市广安市广安中学2022-2023学年中考押题数学预测卷含解析.doc》由会员分享,可在线阅读,更多相关《四川省南充市广安市广安中学2022-2023学年中考押题数学预测卷含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1点A(2,5)关于原点对称的点的坐标是 ( )A(2,5) B(2,5) C(2,5) D(5,2)2如图1,一个扇形纸片的圆心角为90,半径为1如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为(
2、)ABCD3如图,已知点A在反比例函数y上,ACx轴,垂足为点C,且AOC的面积为4,则此反比例函数的表达式为()AyByCyDy4如图,A、B两点在双曲线y=上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=()A3B4C5D65解分式方程3=时,去分母可得()A13(x2)=4B13(x2)=4C13(2x)=4D13(2x)=466的相反数为A-6B6CD7益阳市高新区某厂今年新招聘一批员工,他们中不同文化程度的人数见下表:文化程度高中大专本科硕士博士人数9172095关于这组文化程度的人数数据,以下说法正确的是:( )A众数是20B中位数是17C平均数是12D方差是26
3、8如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BCCDDA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动设P点运动时间为x(s),BPQ的面积为y(cm2),则y关于x的函数图象是( )ABCD9如图,有一块含有30角的直角三角板的两个顶点放在直尺的对边上如果244,那么1的度数是( )A14 B15 C16 D1710如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( )A垂线段最短B经过一点有无数条直线C两点之间,线段最短D经
4、过两点,有且仅有一条直线11某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是()A在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”B从一副扑克牌中任意抽取一张,这张牌是“红色的”C掷一枚质地均匀的硬币,落地时结果是“正面朝上”D掷一个质地均匀的正六面体骰子,落地时面朝上的点数是612对于有理数x、y定义一种运算“”:,其中a、b、c为常数,等式右边是通常的加法与乘法运算,已知,则的值为( )A-1B-11C1D11二、填空题:(本大题共6个小题,每小题4分,共24分)13函数y中,自变量x
5、的取值范围是_14如图ABC中,AB=AC=8,BAC=30,现将ABC绕点A逆时针旋转30得到ACD,延长AD、BC交于点E,则DE的长是_15若x=-1, 则x2+2x+1=_.16抛物线y=(x2)23的顶点坐标是_17如图,ABCD中,对角线AC,BD相交于点O,且ACBD,请你添加一个适当的条件_,使ABCD成为正方形 18如图,正方形ABCD的边长为3,点E,F分别在边BCCD上,BE=CF=1,小球P从点E出发沿直线向点F运动,完成第1次与边的碰撞,每当碰到正方形的边时反弹,反弹时反射角等于入射角,则小球P与正方形的边第2次碰撞到_边上,小球P与正方形的边完成第5次碰撞所经过的路
6、程为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,已知是直角坐标平面上三点.将先向右平移3个单位,再向上平移3个单位,画出平移后的图形;以点为位似中心,位似比为2,将放大,在轴右侧画出放大后的图形;填空:面积为 .20(6分)如图,一枚运载火箭从距雷达站C处5km的地面O处发射,当火箭到达点A,B时,在雷达站C处测得点A,B的仰角分别为34,45,其中点O,A,B在同一条直线上求AC和AB的长(结果保留小数点后一位)(参考数据:sin340.56;cos340.83;tan340.67)21(6分)已知,如图直线l1的解析式为y=x+1,直
7、线l2的解析式为y=ax+b(a0);这两个图象交于y轴上一点C,直线l2与x轴的交点B(2,0)(1)求a、b的值;(2)过动点Q(n,0)且垂直于x轴的直线与l1、l2分别交于点M、N都位于x轴上方时,求n的取值范围;(3)动点P从点B出发沿x轴以每秒1个单位长的速度向左移动,设移动时间为t秒,当PAC为等腰三角形时,直接写出t的值22(8分)如图,在ABC中,点D在边BC上,联结AD,ADB=CDE,DE交边AC于点E,DE交BA延长线于点F,且AD2=DEDF(1)求证:BFDCAD;(2)求证:BFDE=ABAD23(8分)已知,关于x的方程x2mx+m210,(1)不解方程,判断此
8、方程根的情况;(2)若x2是该方程的一个根,求m的值24(10分)如图,某校自行车棚的人字架棚顶为等腰三角形,D是AB的中点,中柱CD1米,A27,求跨度AB的长(精确到0.01米).25(10分)如图,已知矩形ABCD中,AB=3,AD=m,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(s)(1)若m=5,求当P,E,B三点在同一直线上时对应的t的值(2)已知m满足:在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于2,求所有这样的m的取值范围26(12分)先化简,再求值:(a),其
9、中a=3tan30+1,b=cos4527(12分)如图,ABCD,E、F分别为AB、CD上的点,且ECBF,连接AD,分别与EC、BF相交与点G、H,若ABCD,求证:AGDH参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y)【详解】根据中心对称的性质,得点P(2,5)关于原点对称点的点的坐标是(2, 5).故选:B.【点睛】考查关于原点对称的点的坐标特征,平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y)2、C【解析】连接
10、OD,根据勾股定理求出CD,根据直角三角形的性质求出AOD,根据扇形面积公式、三角形面积公式计算,得到答案【详解】解:连接OD,在RtOCD中,OCOD2,ODC30,CD COD60,阴影部分的面积 ,故选:C【点睛】本题考查的是扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键3、C【解析】由双曲线中k的几何意义可知 据此可得到|k|的值;由所给图形可知反比例函数图象的两支分别在第一、三象限,从而可确定k的正负,至此本题即可解答.【详解】SAOC=4,k=2SAOC=8;y=;故选C【点睛】本题是关于反比例函数的题目,需结合反比例函数中系数k的几何意义解答;4、D【解析】欲求S1+S1,
11、只要求出过A、B两点向x轴、y轴作垂线段与坐标轴所形成的矩形的面积即可,而矩形面积为双曲线y=的系数k,由此即可求出S1+S1【详解】点A、B是双曲线y=上的点,分别经过A、B两点向x轴、y轴作垂线段,则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,S1+S1=4+4-11=2故选D5、B【解析】方程两边同时乘以(x-2),转化为整式方程,由此即可作出判断【详解】方程两边同时乘以(x-2),得13(x2)=4,故选B【点睛】本题考查了解分式方程,利用了转化的思想,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键.6、A【解析】根据相反数的定义进行求解.【详解】1的相反数为:1
12、故选A.【点睛】本题主要考查相反数的定义,熟练掌握相反数的定义是解答的关键,绝对值相等,符号相反的两个数互为相反数.7、C【解析】根据众数、中位数、平均数以及方差的概念求解【详解】A、这组数据中9出现的次数最多,众数为9,故本选项错误;B、因为共有5组,所以第3组的人数为中位数,即9是中位数,故本选项错误;C、平均数=12,故本选项正确;D、方差= (9-12)2+(17-12)2+(20-12)2+(9-12)2+(5-12)2= ,故本选项错误.故选C【点睛】本题考查了中位数、平均数、众数的知识,解答本题的关键是掌握各知识点的概念8、C【解析】试题分析:由题意可得BQ=x0x1时,P点在B
13、C边上,BP=3x,则BPQ的面积=BPBQ,解y=3xx=;故A选项错误;1x2时,P点在CD边上,则BPQ的面积=BQBC,解y=x3=;故B选项错误;2x3时,P点在AD边上,AP=93x,则BPQ的面积=APBQ,解y=(93x)x=;故D选项错误故选C考点:动点问题的函数图象9、C【解析】依据ABC=60,2=44,即可得到EBC=16,再根据BECD,即可得出1=EBC=16【详解】如图,ABC=60,2=44,EBC=16,BECD,1=EBC=16,故选:C【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等10、C【解析】用剪刀沿直线将一片平整的树叶剪掉一部
14、分,发现剩下树叶的周长比原树叶的周长要小,线段AB的长小于点A绕点C到B的长度,能正确解释这一现象的数学知识是两点之间,线段最短,故选C【点睛】根据“用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小”得到线段AB的长小于点A绕点C到B的长度,从而确定答案本题考查了线段的性质,能够正确的理解题意是解答本题的关键,属于基础知识,比较简单11、D【解析】根据统计图可知,试验结果在0.16附近波动,即其概率P0.16,计算四个选项的概率,约为0.16者即为正确答案【详解】根据图中信息,某种结果出现的频率约为0.16,在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里
15、随机摸出一个球是“白球”的概率为0.670.16,故A选项不符合题意, 从一副扑克牌中任意抽取一张,这张牌是“红色的”概率为0.480.16,故B选项不符合题意,掷一枚质地均匀的硬币,落地时结果是“正面朝上”的概率是=0.50.16,故C选项不符合题意,掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6的概率是0.16,故D选项符合题意,故选D.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率用到的知识点为:频率=所求情况数与总情况数之比熟练掌握概率公式是解题关键.12、B【解析】先由运算的定义,写出35=25,47=28,得到关于a、b、c的方程组,用含c的代数式表示出a
16、、b代入22求出值【详解】由规定的运算,35=3a+5b+c=25,4a+7b+c=28所以 解这个方程组,得所以22=a+b+c=-35-2c+24+c+c=-2故选B【点睛】本题考查了新运算、三元一次方程组的解法解决本题的关键是根据新运算的意义,正确的写出35=25,47=28,22二、填空题:(本大题共6个小题,每小题4分,共24分)13、x1【解析】分析:根据二次根式有意义的条件解答即可.详解:二次根式有意义,被开方数为非负数,1 -x0,解得x1.故答案为x1.点睛:本题考查了二次根式有意义的条件,熟知二次根式有意义,被开方数为非负数是解题的关键.14、 【解析】过点作于,根据三角形
17、的性质及三角形内角和定理可计算再由旋转可得,根据三角形外角和性质计算,根据含角的直角三角形的三边关系得和的长度,进而得到的长度,然后利用得到与的长度,于是可得.【详解】如图,过点作于, ,将绕点逆时针旋转,使点落在点处,此时点落在点处, 在中, ,在中,故答案为【点睛】本题考查三角形性质的综合应用,要熟练掌握等腰三角形的性质,含角的直角三角形的三边关系,旋转图形的性质15、2【解析】先利用完全平方公式对所求式子进行变形,然后代入x的值进行计算即可.【详解】x=-1, x2+2x+1=(x+1)2=(-1+1)2=2,故答案为:2.【点睛】本题考查了代数式求值,涉及了因式分解,二次根式的性质等,
18、熟练掌握相关知识是解题的关键.16、(2,3)【解析】根据:对于抛物线y=a(xh)2+k的顶点坐标是(h,k).【详解】抛物线y=(x2)23的顶点坐标是(2,3).故答案为(2,3)【点睛】本题考核知识点:抛物线的顶点. 解题关键点:熟记求抛物线顶点坐标的公式.17、BAD=90 (不唯一)【解析】根据正方形的判定定理添加条件即可.【详解】解:平行四边形 ABCD的对角线AC与BD相交于点O,且ACBD,四边形ABCD是菱形,当BAD=90时,四边形ABCD为正方形.故答案为:BAD=90.【点睛】本题考查了正方形的判定:先判定平行四边形是菱形,判定这个菱形有一个角为直角.18、AB, 【
19、解析】根据已知中的点E,F的位置,可知入射角的正切值为,通过相似三角形,来确定反射后的点的位置再由勾股定理就可以求出小球第5次碰撞所经过路程的总长度【详解】根据已知中的点E,F的位置,可知入射角的正切值为,第一次碰撞点为F,在反射的过程中,根据入射角等于反射角及平行关系的三角形的相似可得,第二次碰撞点为G,在AB上,且AG=AB,第三次碰撞点为H,在AD上,且AH=AD,第四次碰撞点为M,在DC上,且DM=DC,第五次碰撞点为N,在AB上,且BN=AB,第六次回到E点,BE=BC.由勾股定理可以得出EF=,FG= ,GH= ,HM=,MN= ,NE= ,故小球第5次经过的路程为:+ + + =
20、 ,故答案为AB, .【点睛】本题考查了正方形与轴对称的性质,解题的关键是熟练的掌握正方形与轴对称的性质.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)详见解析;(2)详见解析;(3).【解析】(1)分别画出A、B、C三点的对应点即可解决问题;(2)由(1)得各顶点的坐标,然后利用位似图形的性质,即可求得各点的坐标,然后在图中作出位似三角形即可(3)求得所在矩形的面积减去三个三角形的面积即可.【详解】(1)如图,即为所求作;(2)如图,即为所求作;(3)面积=44-24-22-24=6.【点睛】本题主要考查了利用平移变换作图、位似作图以及求三角形的
21、面积,作图时要先找到图形的关键点,把这几个关键点按平移的方向和距离确定对应点后,再顺序连接对应点即可得到平移后的图形.20、AC= 6.0km,AB= 1.7km;【解析】在RtAOC, 由的正切值和OC的长求出OA, 在RtBOC, 由BCO的大小和OC的长求出OA,而AB=OB-0A,即可得到答案。【详解】由题意可得:AOC=90,OC=5km在RtAOC中,AC=,AC=6.0km,tan34=,OA=OCtan34=50.67=3.35km,在RtBOC中,BCO=45,OB=OC=5km,AB=53.35=1.651.7km答:AC的长为6.0km,AB的长为1.7km【点睛】本题主
22、要考查三角函数的知识。21、(1)a=;(2)1n2;(3)满足条件的时间t为1s,2s,或(3+)或(3)s【解析】试题分析:(1)、根据题意求出点C的坐标,然后将点C和点B的坐标代入直线解析式求出a和b的值;(2)、根据题意可知点Q在点A和点B之间,从而求出n的取值范围;(3)、本题需要分几种情况分别来进行计算,即AC=P1C,P2A=P2C和AP3=AC三种情况分别进行计算得出t的值试题解析:(1)、解:点C是直线l1:y=x+1与轴的交点, C(0,1),点C在直线l2上, b=1, 直线l2的解析式为y=ax+1, 点B在直线l2上,2a+1=0, a=;(2)、解:由(1)知,l1
23、的解析式为y=x+1,令y=0, x=1,由图象知,点Q在点A,B之间, 1n2(3)、解:如图,PAC是等腰三角形, 点x轴正半轴上时,当AC=P1C时,COx轴, OP1=OA=1, BP1=OBOP1=21=1, 11=1s,当P2A=P2C时,易知点P2与O重合, BP2=OB=2, 21=2s,点P在x轴负半轴时,AP3=AC, A(1,0),C(0,1), AC=, AP3=,BP3=OB+OA+AP3=3+或BP3=OB+OAAP3=3,(3+)1=(3+)s,或(3)1=(3 )s,即:满足条件的时间t为1s,2s,或(3+)或(3)s点睛:本题主要考查的就是一次函数的性质、等
24、腰三角形的性质和动点问题,解决这个问题的关键就是要能够根据题意进行分类讨论,从而得出答案在解决一次函数和等腰三角形问题时,我们一定要根据等腰三角形的性质来进行分类讨论,可以利用圆规来作出图形,然后根据实际题目来求出答案22、见解析【解析】试题分析:(1), ,可得 ,从而得,再根据BDF=CDA 即可证;(2)由 ,可得,从而可得,再由,可得从而得,继而可得 ,得到试题解析:(1), , ,又ADB=CDE ,ADB+ADF=CDE+ADF,即BDF=CDA ,;(2) , , , 【点睛】本题考查了相似三角形的性质与判定,能结合图形以及已知条件灵活选择恰当的方法进行证明是关键.23、(1)证
25、明见解析;(2)m=2或m=1【解析】(1)由=(-m)2-41(m2-1)=40即可得;(2)将x=2代入方程得到关于m的方程,解之可得【详解】(1)=(m)241(m21)=m2m2+4=40,方程有两个不相等的实数根;(2)将x=2代入方程,得:42m+m21=0,整理,得:m28m+12=0,解得:m=2或m=1【点睛】本题考查了根的判别式以及解一元二次方程,解题的关键是:(1)牢记“当0时,方程有两个不相等的实数根”;(2)将x=2代入原方程求出m值24、AB3.93m【解析】想求得AB长,由等腰三角形的三线合一定理可知AB2AD,求得AD即可,而AD可以利用A的三角函数可以求出【详
26、解】ACBC,D是AB的中点,CDAB,又CD1米,A27,ADCDtan271.96,AB2AD,AB3.93m【点睛】本题考查了三角函数,直角三角形,等腰三角形等知识,关键利用了正切函数的定义求出AD,然后就可以求出AB25、 (1) 1;(1) m【解析】(1)在RtABP中利用勾股定理即可解决问题;(1)分两种情形求出AD的值即可解决问题:如图1中,当点P与A重合时,点E在BC的下方,点E到BC的距离为1如图3中,当点P与A重合时,点E在BC的上方,点E到BC的距离为1.【详解】解:(1):(1)如图1中,设PD=t则PA=5-tP、B、E共线,BPC=DPC,ADBC,DPC=PCB
27、,BPC=PCB,BP=BC=5,在RtABP中,AB1+AP1=PB1,31+(5-t)1=51,t=1或9(舍弃),t=1时,B、E、P共线 (1)如图1中,当点P与A重合时,点E在BC的下方,点E到BC的距离为1作EQBC于Q,EMDC于M则EQ=1,CE=DC=3易证四边形EMCQ是矩形,CM=EQ=1,M=90,EM=,DAC=EDM,ADC=M,ADCDME,AD=,如图3中,当点P与A重合时,点E在BC的上方,点E到BC的距离为1作EQBC于Q,延长QE交AD于M则EQ=1,CE=DC=3在RtECQ中,QC=DM=,由DMECDA,AD=,综上所述,在动点P从点D到点A的整个运
28、动过程中,有且只有一个时刻t,使点E到直线BC的距离等于1,这样的m的取值范围m【点睛】本题考查四边形综合问题,根据题意作出图形,熟练运用勾股定理和相似三角形的性质是本题的关键.26、,【解析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,利用-1的偶次幂为1及特殊角的三角函数值求出a的值,代入计算即可求出值解:原式=,当,原式=. “点睛”此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式27、证明见解析.【解析】【分析】利用AAS先证明ABHDCG,根据全等三角形的性质可得AH=DG,再根据AHAGGH,DGDHGH即可证得AGHD.【详解】ABCD,AD,CEBF,AHBDGC,在ABH和DCG中,ABHDCG(AAS),AHDG,AHAGGH,DGDHGH,AGHD.【点睛】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.