《吉林省长春市第二实验校2023届中考数学最后一模试卷含解析.doc》由会员分享,可在线阅读,更多相关《吉林省长春市第二实验校2023届中考数学最后一模试卷含解析.doc(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1如图,平行四边形ABCD中,点A在反比例函数y=(k0)的图象上,点D在y轴上,点B、点C在x轴上若平行四边形ABCD的面积为10,则k的值是()A10B5C
2、5D102如图是二次函数yax2bxc(a0)图象的一部分,对称轴为直线x,且经过点(2,0),下列说法:abc0;ab0;4a2bc0;若(2,y1),(,y2)是抛物线上的两点,则y1y2.其中说法正确的有( )ABCD3如图,某地修建高速公路,要从A地向B地修一条隧道(点A、B在同一水平面上)为了测量A、B两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C处观察B地的俯角为,则A、B两地之间的距离为()A800sin米B800tan米C米D米4哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁”如果现在弟弟的年龄是x岁,哥哥的年龄是
3、y岁,下列方程组正确的是()A BC D5不等式组的解集在数轴上表示为( )ABCD6下列说法正确的是()A某工厂质检员检测某批灯泡的使用寿命采用普查法B已知一组数据1,a,4,4,9,它的平均数是4,则这组数据的方差是7.6C12名同学中有两人的出生月份相同是必然事件D在“等边三角形、正方形、等腰梯形、矩形、正六边形、正五边形”中,任取其中一个图形,恰好既是中心对称图形,又是轴对称图形的概率是7下列运算正确的是()Ax4+x4=2x8 B(x2)3=x5 C(xy)2=x2y2 Dx3x=x48在下列条件中,能够判定一个四边形是平行四边形的是( )A一组对边平行,另一组对边相等B一组对边相等
4、,一组对角相等C一组对边平行,一条对角线平分另一条对角线D一组对边相等,一条对角线平分另一条对角线9把三角形按如图所示的规律拼图案,其中第个图案中有1个三角形,第个图案中有4个三角形,第个图案中有8个三角形,按此规律排列下去,则第个图案中三角形的个数为()A15B17C19D2410如图,C,B是线段AD上的两点,若,则AC与CD的关系为( ) ABCD不能确定二、填空题(本大题共6个小题,每小题3分,共18分)11一个不透明的袋中装有除颜色外均相同的8个黑球、4个白球和若干个红球每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计
5、袋中约有红球_个12一元二次方程x2=3x的解是:_13如图,矩形ABCD中,如果以AB为直径的O沿着滚动一周,点恰好与点C重合,那么 的值等于_(结果保留两位小数)14如图,CB=CA,ACB=90,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FGCA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:AC=FG;SFAB:S四边形CBFG=1:2;ABC=ABF;AD2=FQAC,其中正确的结论的个数是_15(题文)如图1,点P从ABC的顶点B出发,沿BCA匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则
6、ABC的面积是_16不等式-2x+30的解集是_三、解答题(共8题,共72分)17(8分)已知关于x的分式方程=2和一元二次方程mx23mx+m1=0中,m为常数,方程的根为非负数(1)求m的取值范围;(2)若方程有两个整数根x1、x2,且m为整数,求方程的整数根18(8分)计算:(4)()+21(1)0+19(8分)解不等式组,并把解集在数轴上表示出来20(8分)某渔业养殖场,对每天打捞上来的鱼,一部分由工人运到集贸市场按10元/斤销售,剩下的全部按3元/斤的购销合同直接包销给外面的某公司:养殖场共有30名工人,每名工人只能参与打捞与到集贸市场销售中的一项工作,且每人每天可以打捞鱼100斤或
7、销售鱼50斤,设安排x名员工负责打捞,剩下的负责到市场销售(1)若养殖场一天的总销售收入为y元,求y与x的函数关系式;(2)若合同要求每天销售给外面某公司的鱼至少200斤,在遵守合同的前提下,问如何分配工人,才能使一天的销售收入最大?并求出最大值21(8分)如图,在ABC中,C=90,BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC、AB于点E. F试判断直线BC与O的位置关系,并说明理由;若BD=2,BF=2,求O的半径22(10分)(1)计算:(1)0|2|+;(2)如图,在等边三角形ABC中,点D,E分别是边BC,AC的中点,过点E作EFDE
8、,交BC的延长线于点F,求F的度数23(12分)两家超市同时采取通过摇奖返现金搞促销活动,凡在超市购物满100元的顾客均可以参加摇奖一次小明和小华对两家超市摇奖的50名顾客获奖情况进行了统计并制成了图表(如图)奖金金额获奖人数20元15元10元5元商家甲超市5101520乙超市232025(1)在甲超市摇奖的顾客获得奖金金额的中位数是 ,在乙超市摇奖的顾客获得奖金金额的众数是 ;(2)请你补全统计图1;(3)请你分别求出在甲、乙两超市参加摇奖的50名顾客平均获奖多少元?(4)图2是甲超市的摇奖转盘,黄区20元、红区15元、蓝区10元、白区5元,如果你购物消费了100元后,参加一次摇奖,那么你获
9、得奖金10元的概率是多少?24先化简,再求值:,其中参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】作AEBC于E,由四边形ABCD为平行四边形得ADx轴,则可判断四边形ADOE为矩形,所以S平行四边形ABCDS矩形ADOE,根据反比例函数k的几何意义得到S矩形ADOE|k|,利用反比例函数图象得到【详解】作AEBC于E,如图,四边形ABCD为平行四边形,ADx轴,四边形ADOE为矩形,S平行四边形ABCDS矩形ADOE,而S矩形ADOE|k|,|k|1,k0,k1故选A【点睛】本题考查了反比例函数y(k0)系数k的几何意义:从反比例函数y(k0)图象上任意一点向x轴和y轴
10、作垂线,垂线与坐标轴所围成的矩形面积为|k|2、D【解析】根据图象得出a0,即可判断;把x=2代入抛物线的解析式即可判断,根据(2,y1),(,y2)到对称轴的距离即可判断.【详解】二次函数的图象的开口向下,a0,二次函数图象的对称轴是直线x=,a=-b,b0,abc1;解不等式得,x2;不等式组的解集为:x2,在数轴上表示为:故选A.【点睛】本题考查了一元一次不等式组的解法,正确求得不等式组中每个不等式的解集是解决问题的关键.6、B【解析】分别用方差、全面调查与抽样调查、随机事件及概率的知识逐一进行判断即可得到答案【详解】A. 某工厂质检员检测某批灯泡的使用寿命时,检测范围比较大,因此适宜采
11、用抽样调查的方法,故本选项错误;B. 根据平均数是4求得a的值为2,则方差为 (14)2+(24)2+(44)2+(44)2+(94)2=7.6,故本选项正确;C. 12个同学的生日月份可能互不相同,故本事件是随机事件,故错误;D. 在“等边三角形、正方形、等腰梯形、矩形、正六边形、正五边形”六个图形中有3个既是轴对称图形,又是中心对称图形,所以,恰好既是中心对称图形,又是轴对称图形的概率是,故本选项错误故答案选B.【点睛】本题考查的知识点是概率公式、全面调查与抽样调查、方差及随机事件,解题的关键是熟练的掌握概率公式、全面调查与抽样调查、方差及随机事件.7、D【解析】A. x4+x4=2x4
12、,故错误;B. (x2)3=x6 ,故错误;C. (xy)2=x22xy+y2 ,故错误; D. x3x=x4,正确,故选D.8、C【解析】A、错误这个四边形有可能是等腰梯形B、错误不满足三角形全等的条件,无法证明相等的一组对边平行C、正确可以利用三角形全等证明平行的一组对边相等故是平行四边形D、错误不满足三角形全等的条件,无法证明相等的一组对边平行故选C9、D【解析】由图可知:第个图案有三角形1个,第图案有三角形1+34个,第个图案有三角形1+3+48个,第个图案有三角形1+3+4+412,第n个图案有三角形4(n1)个(n1时),由此得出规律解决问题【详解】解:解:第个图案有三角形1个,第
13、图案有三角形1+34个,第个图案有三角形1+3+48个,第n个图案有三角形4(n1)个(n1时),则第个图中三角形的个数是4(71)24个,故选D【点睛】本题考查了规律型:图形的变化类,根据给定图形中三角形的个数,找出an4(n1)是解题的关键10、B【解析】由AB=CD,可得AC=BD,又BC=2AC,所以BC=2BD,所以CD=3AC.【详解】AB=CD,AC+BC=BC+BD,即AC=BD,又BC=2AC,BC=2BD,CD=3BD=3AC.故选B【点睛】本题考查了线段长短的比较,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性同时,灵活运用线段的和、差、倍转化线段之间的数量关
14、系是十分关键的一点二、填空题(本大题共6个小题,每小题3分,共18分)11、8【解析】试题分析:设红球有x个,根据概率公式可得,解得:x8.考点:概率.12、x1=0,x2=1【解析】先移项,然后利用因式分解法求解【详解】x2=1xx2-1x=0,x(x-1)=0,x=0或x-1=0,x1=0,x2=1故答案为:x1=0,x2=1【点睛】本题考查了解一元二次方程-因式分解法:先把方程右边变形为0,再把方程左边分解为两个一次式的乘积,这样原方程转化为两个一元一次方程,然后解一次方程即可得到一元二次方程的解13、3.1【解析】分析:由题意可知:BC的长就是O的周长,列式即可得出结论详解:以AB为直
15、径的O沿着滚动一周,点恰好与点C重合,BC的长就是O的周长,AB=BC,=3.1故答案为3.1点睛:本题考查了圆的周长以及线段的比解题的关键是弄懂BC的长就是O的周长14、【解析】由正方形的性质得出FAD90,ADAFEF,证出CADAFG,由AAS证明FGAACD,得出ACFG,正确;证明四边形CBFG是矩形,得出SFABFBFGS四边形CBFG,正确;由等腰直角三角形的性质和矩形的性质得出ABCABF45,正确;证出ACDFEQ,得出对应边成比例,得出正确【详解】解:四边形ADEF为正方形,FAD90,ADAFEF,CADFAG90,FGCA,GAFAFG90,CADAFG,在FGA和AC
16、D中,FGAACD(AAS),ACFG,正确;BCAC,FGBC,ACB90,FGCA,FGBC,四边形CBFG是矩形,CBF90,SFABFBFGS四边形CBFG,正确;CACB,CCBF90,ABCABF45,正确;FQEDQBADC,EC90,ACDFEQ,AC:ADFE:FQ,ADFEAD2FQAC,正确;故答案为【点睛】本题考查了相似三角形的判定与性质、全等三角形的判定与性质、正方形的性质、矩形的判定与性质、等腰直角三角形的性质;熟练掌握正方形的性质,证明三角形全等和三角形相似是解决问题的关键15、12【解析】根据题意观察图象可得BC=5,点P在AC上运动时,BPAC时,BP有最小值
17、,观察图象可得,BP的最小值为4,即BPAC时BP=4,又勾股定理求得CP=3,因点P从点C运动到点A,根据函数的对称性可得CP=AP=3,所以的面积是=12.16、x【解析】根据解一元一次不等式基本步骤:移项、系数化为1可得【详解】移项,得:-2x-3,系数化为1,得:x,故答案为x【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变三、解答题(共8题,共72分)17、(1)且,;(2)当m=1时,方程的整数根为0和3.【解析】(1)先解出分式方程的解,根据分式的意义和方程的根为非负数得出的取值;(2)
18、根据根与系数的关系得到x1+x2=3,根据方程的两个根都是整数可得m=1或.结合(1)的结论可知m1.解方程即可.【详解】解:(1)关于x的分式方程的根为非负数,且.又,且,解得且.又方程为一元二次方程,.综上可得:且,. (2)一元二次方程有两个整数根x1、x2,m为整数, x1+x2=3,为整数,m=1或.又且,m1.当m=1时,原方程可化为.解得:,. 当m=1时,方程的整数根为0和3.【点睛】考查了解分式方程,一元二次方程根与系数的关系,解一元二次方程等,熟练掌握方程的解法是解题的关键.18、【解析】分析:按照实数的运算顺序进行运算即可.详解:原式 点睛:本题考查实数的运算,主要考查零
19、次幂,负整数指数幂,特殊角的三角函数值以及二次根式,熟练掌握各个知识点是解题的关键.19、1x1【解析】求不等式组的解集首先要分别解出两个不等式的解集,然后利用口诀“同大取大,同小取小,大小小大中间找,大大小小找不到(”确定不等式组解集的公共部分.【详解】解不等式,得x1,解不等式,得x1,不等式组的解集是1x1不等式组的解集在数轴上表示如下:20、(1)y=50x+10500;(2)安排12人打捞,18人销售可使销售利润最大,最大销售利润为9900元【解析】(1)根据题意可以得到y关于x的函数解析式,本题得以解决;(2)根据题意可以得到x的不等式组,从而可以求得x的取值范围,从而可以得到y的
20、最大值,本题得以解决【详解】(1)由题意可得,y=1050(30x)+3100x50(30x)=50x+10500,即y与x的函数关系式为y=50x+10500;(2)由题意可得,得x,x是整数,y=50x+10500,当x=12时,y取得最大值,此时,y=5012+10500=9900,30x=18,答:安排12人打捞,18人销售可使销售利润最大,最大销售利润为9900元【点睛】本题考查一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用函数和不等式的性质解答21、(1)相切,理由见解析;(1)1【解析】(1)求出OD/AC,得到ODBC,根据切线的判定得出即可;(1)根据勾
21、股定理得出方程,求出方程的解即可【详解】(1)直线BC与O的位置关系是相切,理由是:连接OD,OA=OD,OAD=ODA,AD平分CAB,OAD=CAD,ODA=CAD,ODAC,C=90,ODB=90,即ODBC,OD为半径,直线BC与O的位置关系是相切;(1)设O的半径为R,则OD=OF=R,在RtBDO中,由勾股定理得:OB=BD+OD,即(R+1) =(1)+R,解得:R=1,即O的半径是1.【点睛】此题考查切线的判定,勾股定理,解题关键在于求出ODBC.22、(1)1+3;(2)30【解析】(1) 根据零指数幂、 绝对值、 二次根式的性质求出每一部分的值, 代入求出即可;(2)根据平
22、行线的性质可得EDC=B=,根据三角形内角和定理即可求解;【详解】解:(1)原式=12+3=1+3;(2)ABC是等边三角形,B=60,点D,E分别是边BC,AC的中点,DEAB,EDC=B=60,EFDE,DEF=90,F=90EDC=30【点睛】(1) 主要考查零指数幂、 绝对值、 二次根式的性质;(2)考查平行线的性质和三角形内角和定理.23、(1)10,5元;(2)补图见解析;(3)在甲、乙两超市参加摇奖的50名顾客平均获奖分别为10元、8.2元;(4).【解析】(1)根据中位数、众数的定义解答即可;(2)根据表格中的数据补全统计图即可;(3)根据计算平均数的公式求解即可;(4)根据扇
23、形统计图,结合概率公式求解即可.【详解】(1)在甲超市摇奖的顾客获得奖金金额的中位数是=10元,在乙超市摇奖的顾客获得奖金金额的众数5元,故答案为:10元、5元;(2)补全图形如下:(3)在甲超市平均获奖为=10(元),在乙超市平均获奖为=8.2(元);(4)获得奖金10元的概率是=【点睛】本题考查了中位数及众数的定义、平均数的计算公式及简单概率的求法,熟知这些知识点是解决本题的关键.24、 ;【解析】先对小括号部分通分,同时把除化为乘,再根据分式的基本性质约分,最后代入求值【详解】解:原式=把代入得:原式=【点睛】本题考查分式的化简求值,计算题是中考必考题,一般难度不大,要特别慎重,尽量不在计算上失分