《四川省成都市温江区第二区重点中学2022-2023学年中考数学仿真试卷含解析.doc》由会员分享,可在线阅读,更多相关《四川省成都市温江区第二区重点中学2022-2023学年中考数学仿真试卷含解析.doc(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,从圆外一点引圆的两条切线,切点分别为,如果, ,那么弦AB的长是( )ABCD2如图,ABBD,CDBD,垂足分别
2、为B、D,AC和BD相交于点E,EFBD垂足为F则下列结论错误的是()ABCD3若函数y=kxb的图象如图所示,则关于x的不等式k(x3)b0的解集为()Ax2Bx2Cx5Dx54魏晋时期的数学家刘徽首创割圆术为计算圆周率建立了严密的理论和完善的算法作圆内接正多边形,当正多边形的边数不断增加时,其周长就无限接近圆的周长,进而可用来求得较为精确的圆周率祖冲之在刘徽的基础上继续努力,当正多边形的边数增加24576时,得到了精确到小数点后七位的圆周率,这一成就在当时是领先其他国家一千多年,如图,依据“割圆术”,由圆内接正六边形算得的圆周率的近似值是()A0.5B1C3D5如图,在正方形ABCD中,G
3、为CD边中点,连接AG并延长,分别交对角线BD于点F,交BC边延长线于点E若FG2,则AE的长度为( )A6B8C10D126一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球(不放回),再从余下的2个球中任意摸出1个球则两次摸到的球的颜色不同的概率为()ABCD7如果,那么代数式的值是( )A6B2C-2D-68吉林市面积约为27100平方公里,将27100这个数用科学记数法表示为()A27.1102 B2.71103 C2.71104 D0.2711059有一种球状细菌的直径用科学记数法表示为2.16103米,则这个直径是()A216000米B0.00
4、216米C0.000216米D0.0000216米10下列各式中计算正确的是ABCD11的值是()A1B1C3D312已知点、都在反比例函数的图象上,则下列关系式一定正确的是( )ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)139的算术平方根是 14如图,在菱形纸片中,将菱形纸片翻折,使点落在的中点处,折痕为,点,分别在边,上,则的值为_15计算的结果为 16一个多边形的内角和是,则它是_边形17如图,在矩形ABCD中,AD=4,点P是直线AD上一动点,若满足PBC是等腰三角形的点P有且只有3个,则AB的长为 18方程的解是_.三、解答题:(本大题共9个小题,共78分,解答应
5、写出文字说明、证明过程或演算步骤19(6分)已知x11x11求代数式(x1)1+x(x4)+(x1)(x+1)的值20(6分)已知关于 x 的一元二次方程 x22(k1)x+k(k+2)0 有两个不相等的实数根求 k 的取值范围;写出一个满足条件的 k 的值,并求此时方程的根21(6分)如图,在ABC中,C = 90,E是BC上一点,EDAB,垂足为D求证:ABCEBD22(8分)我们知道,平面内互相垂直且有公共原点的两条数轴构成平面直角坐标系,如果两条数轴不垂直,而是相交成任意的角(0180且90),那么这两条数轴构成的是平面斜坐标系,两条数轴称为斜坐标系的坐标轴,公共原点称为斜坐标系的原点
6、,如图1,经过平面内一点P作坐标轴的平行线PM和PN,分别交x轴和y轴于点M,N点M、N在x轴和y轴上所对应的数分别叫做P点的x坐标和y坐标,有序实数对(x,y)称为点P的斜坐标,记为P(x,y)(1)如图2,45,矩形OABC中的一边OA在x轴上,BC与y轴交于点D,OA2,OCl点A、B、C在此斜坐标系内的坐标分别为A ,B ,C 设点P(x,y)在经过O、B两点的直线上,则y与x之间满足的关系为 设点Q(x,y)在经过A、D两点的直线上,则y与x之间满足的关系为 (2)若120,O为坐标原点如图3,圆M与y轴相切原点O,被x轴截得的弦长OA4 ,求圆M的半径及圆心M的斜坐标如图4,圆M的
7、圆心斜坐标为M(2,2),若圆上恰有两个点到y轴的距离为1,则圆M的半径r的取值范围是 23(8分)某公司10名销售员,去年完成的销售额情况如表:销售额(单位:万元)34567810销售员人数(单位:人)1321111(1)求销售额的平均数、众数、中位数;(2)今年公司为了调动员工积极性,提高年销售额,准备采取超额有奖的措施,请根据(1)的结果,通过比较,合理确定今年每个销售员统一的销售额标准是多少万元?24(10分)如图1,四边形ABCD,边AD、BC的垂直平分线相交于点O连接OA、OB、OC、ODOE是边CD的中线,且AOB+COD180(1)如图2,当ABO是等边三角形时,求证:OEAB
8、;(2)如图3,当ABO是直角三角形时,且AOB90,求证:OEAB;(3)如图4,当ABO是任意三角形时,设OAD,OBC,试探究、之间存在的数量关系?结论“OEAB”还成立吗?若成立,请你证明;若不成立,请说明理由25(10分)在一次数学活动课上,老师让同学们到操场上测量旗杆的高度,然后回来交流各自的测量方法小芳的测量方法是:拿一根高3.5米的竹竿直立在离旗杆27米的C处(如图),然后沿BC方向走到D处,这时目测旗杆顶部A与竹竿顶部E恰好在同一直线上,又测得C、D两点的距离为3米,小芳的目高为1.5米,这样便可知道旗杆的高你认为这种测量方法是否可行?请说明理由26(12分)某楼盘2018年
9、2月份准备以每平方米7500元的均价对外销售,由于国家有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格连续两个月进行下调,4 月份下调到每平方米6075元的均价开盘销售(1)求3、4两月平均每月下调的百分率;(2)小颖家现在准备以每平方米6075元的开盘均价,购买一套100平方米的房子,因为她家一次性付清购房款,开发商还给予以下两种优惠方案以供选择:打9.8折销售;不打折,送两年物业管理费,物业管理费是每平方米每月1.5元,小颖家选择哪种方案更优惠?(3)如果房价继续回落,按此平均下调的百分率,请你预测到6月份该楼盘商品房成交均价是否会跌破4800元/平方米,请说
10、明理由27(12分)如图,一次函数yx5的图象与反比例函数y (k0)在第一象限的图象交于A(1,n)和B两点求反比例函数的解析式;在第一象限内,当一次函数yx5的值大于反比例函数y (k0)的值时,写出自变量x的取值范围参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】先利用切线长定理得到,再利用可判断为等边三角形,然后根据等边三角形的性质求解【详解】解:,PB为的切线,为等边三角形,故选C【点睛】本题考查切线长定理,掌握切线长定理是解题的关键2、A【解析】利用平行线的性质以及相似三角形的性质一一判断即可【详解】解:
11、ABBD,CDBD,EFBD,ABCDEFABEDCE,故选项B正确,EFAB,故选项C,D正确,故选:A【点睛】考查平行线的性质,相似三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型3、C【解析】根据函数图象知:一次函数过点(2,0);将此点坐标代入一次函数的解析式中,可求出k、b的关系式;然后将k、b的关系式代入k(x3)b0中进行求解即可【详解】解:一次函数y=kxb经过点(2,0),2kb=0,b=2k函数值y随x的增大而减小,则k0;解关于k(x3)b0,移项得:kx3k+b,即kx1k;两边同时除以k,因为k0,因而解集是x1故选C【
12、点睛】本题考查一次函数与一元一次不等式4、C【解析】连接OC、OD,根据正六边形的性质得到COD60,得到COD是等边三角形,得到OCCD,根据题意计算即可【详解】连接OC、OD,六边形ABCDEF是正六边形,COD60,又OCOD,COD是等边三角形,OCCD,正六边形的周长:圆的直径6CD:2CD3,故选:C【点睛】本题考查的是正多边形和圆,掌握正多边形的中心角的计算公式是解题的关键5、D【解析】根据正方形的性质可得出ABCD,进而可得出ABFGDF,根据相似三角形的性质可得出=2,结合FG=2可求出AF、AG的长度,由ADBC,DG=CG,可得出AG=GE,即可求出AE=2AG=1【详解
13、】解:四边形ABCD为正方形,AB=CD,ABCD, ABF=GDF,BAF=DGF,ABFGDF,=2,AF=2GF=4,AG=2ADBC,DG=CG,=1,AG=GEAE=2AG=1故选:D【点睛】本题考查了相似三角形的判定与性质、正方形的性质,利用相似三角形的性质求出AF的长度是解题的关键6、B【解析】本题主要需要分类讨论第一次摸到的球是白球还是红球,然后再进行计算.【详解】若第一次摸到的是白球,则有第一次摸到白球的概率为,第二次,摸到白球的概率为,则有;若第一次摸到的球是红色的,则有第一次摸到红球的概率为,第二次摸到白球的概率为1,则有,则两次摸到的球的颜色不同的概率为.【点睛】掌握分
14、类讨论的方法是本题解题的关键.7、A【解析】【分析】将所求代数式先利用单项式乘多项式法则、平方差公式进行展开,然后合并同类项,最后利用整体代入思想进行求值即可.【详解】3a2+5a-1=0,3a2+5a=1,5a(3a+2)-(3a+2)(3a-2)=15a2+10a-9a2+4=6a2+10a+4=2(3a2+5a)+4=6,故选A.【点睛】本题考查了代数式求值,涉及到单项式乘多项式、平方差公式、合并同类项等,利用整体代入思想进行解题是关键.8、C【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移
15、动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】将27100用科学记数法表示为:. 2.71104.故选:C.【点睛】本题考查科学记数法表示较大的数。9、B【解析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a10n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】2.16103米0.00216米故选B【点睛】考查了用科学记数法表示较小的数,一般形式为a10n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定10、B【解析】根据完全平方公式对A进行判断;根据幂的乘方与积
16、的乘方对B、C进行判断;根据合并同类项对D进行判断【详解】A. ,故错误. B. ,正确.C. ,故错误.D. , 故错误.故选B.【点睛】考查完全平方公式,合并同类项,幂的乘方与积的乘方,熟练掌握它们的运算法则是解题的关键.11、B【解析】直接利用立方根的定义化简得出答案【详解】因为(-1)3=-1,=1故选:B【点睛】此题主要考查了立方根,正确把握立方根的定义是解题关键,12、A【解析】分析:根据反比例函数的性质,可得答案详解:由题意,得k=-3,图象位于第二象限,或第四象限,在每一象限内,y随x的增大而增大,36,x1x20,故选A点睛:本题考查了反比例函数,利用反比例函数的性质是解题关
17、键二、填空题:(本大题共6个小题,每小题4分,共24分)13、1【解析】根据一个正数的算术平方根就是其正的平方根即可得出.【详解】,9算术平方根为1故答案为1【点睛】本题考查了算术平方根,熟练掌握算术平方根的概念是解题的关键.14、【解析】过点作,交延长线于,连接,交于,根据折叠的性质可得,根据同角的余角相等可得,可得,由平行线的性质可得,根据的三角函数值可求出、的长,根据为中点即可求出的长,根据余弦的定义的值即可得答案.【详解】过点作,交延长线于,连接,交于,四边形是菱形,将菱形纸片翻折,使点落在的中点处,折痕为,为中点,.故答案为【点睛】本题考查了折叠的性质、菱形的性质及三角函数的定义,折
18、叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,熟练掌握三角函数的定义并熟记特殊角的三角函数值是解题关键.15、【解析】直接把分子相加减即可.【详解】=,故答案为:.【点睛】本题考查了分式的加减法,关键是要注意通分及约分的灵活应用16、六【解析】试题分析:这个正多边形的边数是n,则(n2)180=720,解得:n=1则这个正多边形的边数是六,故答案为六考点:多边形内角与外角17、1【解析】试题分析:如图,当AB=AD时,满足PBC是等腰三角形的点P有且只有3个,P1BC,P2BC是等腰直角三角形,P3BC是等腰直角三角形(P3B=P3C),则AB=A
19、D=1,故答案为1考点:矩形的性质;等腰三角形的性质;勾股定理;分类讨论18、.【解析】根据解分式方程的步骤依次计算可得.【详解】解:去分母,得:,解得:,当时,所以是原分式方程的解,故答案为:.【点睛】本题主要考查解分式方程,解题的关键是熟练掌握解分式方程的步骤:去分母;求出整式方程的解;检验;得出结论.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、2.【解析】将原式化简整理,整体代入即可解题.【详解】解:(x1)1+x(x4)+(x1)(x+1)x11x+1+x14x+x143x12x3,x11x11原式3x12x33(x11x1)312【点睛】本题
20、考查了代数式的化简求值,属于简单题,整体代入是解题关键.20、方程的根【解析】(1)根据方程的系数结合根的判别式,即可得出关于k的一元一次不等式,解之即可得出k的取值范围;(1)取k=0,再利用分解因式法解一元二次方程,即可求出方程的根【详解】(1)关于x的一元二次方程x11(ka)x+k(k+1)=0有两个不相等的实数根,=1(k1)14k(k1)=16k+40,解得:k (1)当k=0时,原方程为x1+1x=x(x+1)=0,解得:x1=0,x1=1当k=0时,方程的根为0和1【点睛】本题考查了根的判别式以及因式分解法解一元二次方程,解题的关键是:(1)牢记“当0时,方程有两个不相等的实数
21、根”;(1)取k=0,再利用分解因式法解方程21、证明见解析【解析】试题分析:先根据垂直的定义得出EDB90,故可得出EDBC再由BB,根据有两个角相等的两三角形相似即可得出结论试题解析:解:EDAB, EDB90C90, EDBC BB, 点睛:本题考查的是相似三角形的判定,熟知有两组角对应相等的两个三角形相似是解答此题的关键22、(1)(2,0),(1,),(1,);y=x; y=x,y=x+;(2)半径为4,M(,);1r+1【解析】(1)如图2-1中,作BEOD交OA于E,CFOD交x轴于F求出OE、OF、CF、OD、BE即可解决问题;如图2-2中,作BEOD交OA于E,作PMOD交O
22、A于M利用平行线分线段成比例定理即可解决问题;如图3-3中,作QMOA交OD于M利用平行线分线段成比例定理即可解决问题;(2)如图3中,作MFOA于F,作MNy轴交OA于N解直角三角形即可解决问题;如图4中,连接OM,作MKx轴交y轴于K,作MNOK于N交M于E、F求出FN=NE=1时,M的半径即可解决问题.【详解】(1)如图21中,作BEOD交OA于E,CFOD交x轴于F,由题意OC=CD=1,OA=BC=2,BD=OE=1,OD=CF=BE=,A(2,0),B(1,),C(1,),故答案为(2,0),(1,),(1,);如图22中,作BEOD交OA于E,作PMOD交OA于M,ODBE,OD
23、PM,BEPM,=,y=x;如图23中,作QMOA交OD于M,则有,y=x+,故答案为y=x,y=x+;(2)如图3中,作MFOA于F,作MNy轴交OA于N,=120,OMy轴,MOA=30,MFOA,OA=4,OF=FA=2,FM=2,OM=2FM=4,MNy轴,MNOM,MN=,ON=2MN=,M(,);如图4中,连接OM,作MKx轴交y轴于K,作MNOK于N交M于E、FMKx轴,=120,MKO=60,MK=OK=2,MKO是等边三角形,MN=,当FN=1时,MF=1,当EN=1时,ME=+1,观察图象可知当M的半径r的取值范围为1r+1故答案为:1r+1【点睛】本题考查圆综合题、平行线
24、分线段成比例定理、等边三角形的判定和性质、平面直角坐标系等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,属于中考压轴题23、(1)平均数5.6(万元);众数是4(万元);中位数是5(万元);(2)今年每个销售人员统一的销售标准应是5万元【解析】(1)根据平均数公式求得平均数,根据次数出现最多的数确定众数,按从小到大顺序排列好后求得中位数(2)根据平均数,中位数,众数的意义回答【详解】解:(1)平均数=(31+43+52+61+71+81+101)=5.6(万元);出现次数最多的是4万元,所以众数是4(万元);因为第五,第六个数均是5万元,所以中位数是5(万元)(2)今年每个销售人员
25、统一的销售标准应是5万元理由如下:若规定平均数5.6万元为标准,则多数人无法或不可能超额完成,会挫伤员工的积极性;若规定众数4万元为标准,则大多数人不必努力就可以超额完成,不利于提高年销售额;若规定中位数5万元为标准,则大多数人能完成或超额完成,少数人经过努力也能完成因此把5万元定为标准比较合理【点睛】本题考查的知识点是众数、平均数以及中位数,解题的关键是熟练的掌握众数、平均数以及中位数.24、(1)详见解析;(2)详见解析;(3)+90;成立,理由详见解析【解析】(1)作OHAB于H,根据线段垂直平分线的性质得到OD=OA,OB=OC,证明OCEOBH,根据全等三角形的性质证明;(2)证明O
26、CDOBA,得到AB=CD,根据直角三角形的性质得到OE=CD,证明即可;(3)根据等腰三角形的性质、三角形内角和定理计算;延长OE至F,是EF=OE,连接FD、FC,根据平行四边形的判定和性质、全等三角形的判定和性质证明【详解】(1)作OHAB于H,AD、BC的垂直平分线相交于点O,OD=OA,OB=OC,ABO是等边三角形,OD=OC,AOB=60,AOB+COD180COD=120,OE是边CD的中线,OECD,OCE=30,OA=OB,OHAB,BOH=30,BH=AB,在OCE和BOH中,OCEOBH,OE=BH,OE=AB;(2)AOB=90,AOB+COD=180,COD=90,
27、在OCD和OBA中, ,OCDOBA,AB=CD,COD=90,OE是边CD的中线,OE=CD,OE=AB;(3)OAD=,OA=OD,AOD=1802,同理,BOC=1802,AOB+COD=180,AOD+COB=180,1802+1802=180,整理得,+=90;延长OE至F,使EF=OE,连接FD、FC,则四边形FDOC是平行四边形, OCF+COD=180,AOB=FCO,在FCO和AOB中,FCOAOB,FO=AB,OE=FO=AB【点睛】本题是四边形的综合题,考查了线段垂直平分线的性质、全等三角形的判定和性质以及直角三角形斜边上的中线性质、平行四边形的判定与性质等知识;熟练掌握
28、平行四边形的判定与性质,证明三角形全等是解题的关键25、这种测量方法可行,旗杆的高为21.1米【解析】分析:根据已知得出过F作FGAB于G,交CE于H,利用相似三角形的判定得出AGFEHF,再利用相似三角形的性质得出即可详解:这种测量方法可行 理由如下:设旗杆高AB=x过F作FGAB于G,交CE于H(如图)所以AGFEHF因为FD=1.1,GF=27+3=30,HF=3,所以EH=3.11.1=2,AG=x1.1由AGFEHF,得,即,所以x1.1=20,解得x=21.1(米)答:旗杆的高为21.1米点睛:此题主要考查了相似三角形的判定与性质,根据已知得出AGFEHF是解题关键26、(1)10
29、%;(2)方案一更优惠,小颖选择方案一:打9.8折购买;(3)不会跌破4800元/平方米,理由见解析【解析】(1)设3、4两月平均每月下调的百分率为x,根据下降率公式列方程解方程求出答案;(2)分别计算出方案一与方案二的费用相比较即可;(3)根据(1)的答案计算出6月份的价格即可得到答案.【详解】(1)设3、4两月平均每月下调的百分率为x,由题意得:7500(1x)26075,解得:x10.110%,x21.9(舍),答:3、4两月平均每月下调的百分率是10%;(2)方案一:60751000.98595350(元),方案二:60751001001.524603900(元),5953506039
30、00,方案一更优惠,小颖选择方案一:打9.8折购买;(3)不会跌破4800元/平方米因为由(1)知:平均每月下调的百分率是10%,所以:6075(110%)24920.75(元/平方米),4920.754800,6月份该楼盘商品房成交均价不会跌破4800元/平方米【点睛】此题考查一元二次方程的实际应用,方案比较计算,正确理解题意并列出方程解答问题是解题的关键.27、(1);(2)1x1.【解析】(1)将点A的坐标(1,1)代入,即可求出反比例函数的解析式;(2)一次函数yx5的值大于反比例函数y,即反比例函数的图象在一次函数的图象的下方时自变量的取值范围即可【详解】解:(1)一次函数y=x+5
31、的图象过点A(1,n),n=1+5,解得:n=1,点A的坐标为(1,1)反比例函数y=(k0)过点A(1,1),k=11=1,反比例函数的解析式为y=联立,解得:或,点B的坐标为(1,1)(2)观察函数图象,发现:当1x1.时,反比例函数图象在一次函数图象下方,当一次函数y=x+5的值大于反比例函数y=(k0)的值时,x的取值范围为1x1【点睛】本题考查了反比例函数和一次函数的交点问题,以及用待定系数法求反比例函数和一次函数的解析式,是基础知识要熟练掌握解题的关键是:(1)联立两函数解析式成二元一次方程组;(2)求出点C的坐标;(3)根据函数图象上下关系结合交点横坐标解决不等式本题属于基础题,难度不大,解决该题型题目时,联立两函数解析式成方程组,解方程组求出交点的坐标是关键