《四川省南充市蓬安县重点中学2022-2023学年中考冲刺卷数学试题含解析.doc》由会员分享,可在线阅读,更多相关《四川省南充市蓬安县重点中学2022-2023学年中考冲刺卷数学试题含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1已知关于x的一元二次方程x2+mx+n0的两个实数根分别为x12,x24,则m+n的值是()A10B
2、10C6D22已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为( )A8或10B8C10D6或123如果两圆只有两条公切线,那么这两圆的位置关系是( )A内切B外切C相交D外离4一次函数y=ax+b与反比例函数,其中ab0,a、b为常数,它们在同一坐标系中的图象可以是()ABCD5如图,在矩形ABCD中,对角线AC,BD相交于点O,AEBD,垂足为E,AE=3,ED=3BE,则AB的值为()A6B5C2D36在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了如计算89时,左手伸出3根手指,右手伸出4
3、根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则89=107+2=1那么在计算67时,左、右手伸出的手指数应该分别为( )A1,2B1,3C4,2D4,37某校举行运动会,从商场购买一定数量的笔袋和笔记本作为奖品若每个笔袋的价格比每个笔记本的价格多3元,且用200元购买笔记本的数量与用350元购买笔袋的数量相同设每个笔记本的价格为x元,则下列所列方程正确的是()ABCD8如果将抛物线向下平移1个单位,那么所得新抛物线的表达式是ABCD9如图,数轴上有三个点A、B、C,若点A、B表示的数互为相反数,则图中点C对应的数是()A2B0C1D410如果与互补,与互余,则与的关系是( )ABC
4、D以上都不对11生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了132件.如果全组共有x名同学,则根据题意列出的方程是( )Ax(x+1)=132Bx(x-1)=132Cx(x+1)=132Dx(x-1)=132212如图,在矩形ABCD中,AB=,AD=2,以点A为圆心,AD的长为半径的圆交BC边于点E,则图中阴影部分的面积为()ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13若实数a、b在数轴上的位置如图所示,则代数式|ba|+化简为_14分解因式:3m26mn+3n2_15如图,边长为6的菱形ABCD中,AC是其对角线,B=60,点P在CD上,
5、CP=2,点M在AD上,点N在AC上,则PMN的周长的最小值为_ 16如图,在等边ABC中,AB=4,D是BC的中点,将ABD绕点A旋转后得到ACE,连接DE交AC于点F,则AEF的面积为_17如图,小明想用图中所示的扇形纸片围成一个圆锥,已知扇形的半径为5cm,弧长是cm,那么围成的圆锥的高度是 cm18如图,RtABC的直角边BC在x轴上,直线y=x经过直角顶点B,且平分ABC的面积,BC=3,点A在反比例函数y=图象上,则k=_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发驶向乙地,如
6、图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系;折线OBCDA表示轿车离甲地距离y(千米)与时间x(小时)之间的函数关系请根据图象解答下列问题:当轿车刚到乙地时,此时货车距离乙地 千米;当轿车与货车相遇时,求此时x的值;在两车行驶过程中,当轿车与货车相距20千米时,求x的值20(6分)某市扶贫办在精准扶贫工作中,组织30辆汽车装运花椒、核桃、甘蓝向外地销售按计划30辆车都要装运,每辆汽车只能装运同一种产品,且必须装满,根据下表提供的信息,解答以下问题:产品名称核桃花椒甘蓝每辆汽车运载量(吨)1064每吨土特产利润(万元)0.70.80.5若装运核桃的汽车为x辆,装运甘蓝
7、的车辆数是装运核桃车辆数的2倍多1,假设30辆车装运的三种产品的总利润为y万元(1)求y与x之间的函数关系式;(2)若装花椒的汽车不超过8辆,求总利润最大时,装运各种产品的车辆数及总利润最大值21(6分)已知:如图,MNQ中,MQNQ(1)请你以MN为一边,在MN的同侧构造一个与MNQ全等的三角形,画出图形,并简要说明构造的方法;(2)参考(1)中构造全等三角形的方法解决下面问题:如图,在四边形ABCD中,B=D求证:CD=AB22(8分)如图,已知点E,F分别是ABCD的边BC,AD上的中点,且BAC=90(1)求证:四边形AECF是菱形;(2)若B=30,BC=10,求菱形AECF面积23
8、(8分)某同学用两个完全相同的直角三角形纸片重叠在一起(如图1)固定ABC不动,将DEF沿线段AB向右平移(1)若A=60,斜边AB=4,设AD=x(0x4),两个直角三角形纸片重叠部分的面积为y,试求出y与x的函数关系式;(2)在运动过程中,四边形CDBF能否为正方形,若能,请指出此时点D的位置,并说明理由;若不能,请你添加一个条件,并说明四边形CDBF为正方形?24(10分)某市政府大力支持大学生创业李明在政府的扶持下投资销售一种进价为20元的护眼台灯销售过程中发现,每月销售量Y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y10x+1设李明每月获得利润为W(元),当销售单价定为
9、多少元时,每月获得利润最大?根据物价部门规定,这种护眼台灯不得高于32元,如果李明想要每月获得的利润2000元,那么销售单价应定为多少元?25(10分)如图矩形ABCD中AB=6,AD=4,点P为AB上一点,把矩形ABCD沿过P点的直线l折叠,使D点落在BC边上的D处,直线l与CD边交于Q点(1)在图(1)中利用无刻度的直尺和圆规作出直线l(保留作图痕迹,不写作法和理由)(2)若PDPD,求线段AP的长度;求sinQDD26(12分)已知:如图,在平面直角坐标系xOy中,直线AB分别与x轴、y轴交于点B,A,与反比例函数的图象分别交于点C,D,CEx轴于点E,tanABO=,OB=4,OE=1
10、(1)求该反比例函数的解析式;(1)求三角形CDE的面积27(12分)如图所示,小王在校园上的A处正面观测一座教学楼墙上的大型标牌,测得标牌下端D处的仰角为30,然后他正对大楼方向前进5m到达B处,又测得该标牌上端C处的仰角为45若该楼高为16.65m,小王的眼睛离地面1.65m,大型标牌的上端与楼房的顶端平齐求此标牌上端与下端之间的距离(1.732,结果精确到0.1m)参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】根据“一元二次方程x2+mx+n0的两个实数根分别为x12,x24”,结合根与系数的关系,分别列出关
11、于m和n的一元一次不等式,求出m和n的值,代入m+n即可得到答案【详解】解:根据题意得:x1+x2m2+4,解得:m6,x1x2n24,解得:n8,m+n6+82,故选D【点睛】本题考查了根与系数的关系,正确掌握根与系数的关系是解决问题的关键2、C【解析】试题分析:4是腰长时,三角形的三边分别为4、4、4,4+4=4,不能组成三角形,4是底边时,三角形的三边分别为4、4、4,能组成三角形,周长=4+4+4=4,综上所述,它的周长是4故选C考点:4等腰三角形的性质;4三角形三边关系;4分类讨论3、C【解析】两圆内含时,无公切线;两圆内切时,只有一条公切线;两圆外离时,有4条公切线;两圆外切时,有
12、3条公切线;两圆相交时,有2条公切线【详解】根据两圆相交时才有2条公切线故选C【点睛】本题考查了圆与圆的位置关系熟悉两圆的不同位置关系中的外公切线和内公切线的条数4、C【解析】根据一次函数的位置确定a、b的大小,看是否符合ab0,交y轴负半轴,则b0,满足ab0,反比例函数y= 的图象过一、三象限,所以此选项不正确;B. 由一次函数图象过二、四象限,得a0,满足ab0,ab0,交y轴负半轴,则b0,满足ab0,反比例函数y=的图象过一、三象限,所以此选项正确;D. 由一次函数图象过二、四象限,得a0,交y轴负半轴,则b0,与已知相矛盾所以此选项不正确;故选C.【点睛】此题考查反比例函数的图象,
13、一次函数的图象,解题关键在于确定a、b的大小5、C【解析】由在矩形ABCD中,AEBD于E,BE:ED=1:3,易证得OAB是等边三角形,继而求得BAE的度数,由OAB是等边三角形,求出ADE的度数,又由AE=3,即可求得AB的长【详解】四边形ABCD是矩形,OB=OD,OA=OC,AC=BD,OA=OB,BE:ED=1:3,BE:OB=1:2,AEBD,AB=OA,OA=AB=OB,即OAB是等边三角形,ABD=60,AEBD,AE=3,AB=,故选C【点睛】此题考查了矩形的性质、等边三角形的判定与性质以及含30角的直角三角形的性质,结合已知条件和等边三角形的判定方法证明OAB是等边三角形是
14、解题关键6、A【解析】试题分析:通过猜想得出数据,再代入看看是否符合即可解:一只手伸出1,未伸出4,另一只手伸出2,未伸出3,伸出的和为310=30,30+43=42,故选A点评:此题是定义新运算题型通过阅读规则,得出一般结论解题关键是对号入座不要找错对应关系7、B【解析】试题分析:设每个笔记本的价格为x元,根据“用200元购买笔记本的数量与用350元购买笔袋的数量相同”这一等量关系列出方程即可考点:由实际问题抽象出分式方程8、C【解析】根据向下平移,纵坐标相减,即可得到答案【详解】抛物线y=x2+2向下平移1个单位,抛物线的解析式为y=x2+2-1,即y=x2+1故选C9、C【解析】【分析】
15、首先确定原点位置,进而可得C点对应的数【详解】点A、B表示的数互为相反数,AB=6原点在线段AB的中点处,点B对应的数为3,点A对应的数为-3,又BC=2,点C在点B的左边,点C对应的数是1,故选C【点睛】本题主要考查了数轴,关键是正确确定原点位置10、C【解析】根据1与2互补,2与1互余,先把1、1都用2来表示,再进行运算【详解】1+2=1801=180-2又2+1=901=90-21-1=90,即1=90+1故选C【点睛】此题主要记住互为余角的两个角的和为90,互为补角的两个角的和为180度11、B【解析】全组有x名同学,则每名同学所赠的标本为:(x-1)件,那么x名同学共赠:x(x-1)
16、件,所以,x(x-1)=132,故选B.12、B【解析】先利用三角函数求出BAE=45,则BE=AB=,DAE=45,然后根据扇形面积公式,利用图中阴影部分的面积=S矩形ABCDSABES扇形EAD进行计算即可【详解】解:AE=AD=2,而AB=,cosBAE=,BAE=45,BE=AB=,BEA=45ADBC,DAE=BEA=45,图中阴影部分的面积=S矩形ABCDSABES扇形EAD=2=21故选B【点睛】本题考查了扇形面积的计算阴影面积常用的方法:直接用公式法;和差法;割补法求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积二、填空题:(本大题共6个小题,每小题4分,共24分)1
17、3、2ab【解析】直接利用数轴上a,b的位置进而得出ba0,a0,再化简得出答案【详解】解:由数轴可得:ba0,a0,则|ba|+=ab+a=2ab故答案为2ab【点睛】此题主要考查了二次根式的性质与化简,正确得出各项符号是解题关键14、3(m-n)2【解析】原式=故填:15、2【解析】过P作关于AC和AD的对称点,连接和,过P作, 和,M,N共线时最短,根据对称性得知PMN的周长的最小值为.因为四边形ABCD是菱形,AD是对角线,可以求得,根据特殊三角形函数值求得,再根据线段相加勾股定理即可求解.【详解】过P作关于AC和AD的对称点,连接和,过P作,四边形ABCD是菱形,AD是对角线,,又由
18、题意得【点睛】本题主要考查对称性质,菱形性质,内角和定理和勾股定理,熟悉掌握定理是关键.16、【解析】首先,利用等边三角形的性质求得AD=2;然后根据旋转的性质、等边三角形的性质推知ADE为等边三角形,则DE=AD,便可求出EF和AF,从而得到AEF的面积.【详解】解:在等边ABC中,B=60,AB=4,D是BC的中点,ADBC,BAD=CAD=30,AD=ABcos30=4=2,根据旋转的性质知,EAC=DAB=30,AD=AE,DAE=EAC+CAD=60,ADE的等边三角形,DE=AD=2,AEF=60,EAC=CADEF=DF=,AFDEAF=EFtan60=3,SAEF=EFAF=3
19、=.故答案为:.【点睛】本题考查了旋转的性质,等边三角形的判定与性质,熟记各性质并求出ADE是等边三角形是解题的关键17、4【解析】已知弧长即已知围成的圆锥的底面半径的长是6cm,这样就求出底面圆的半径扇形的半径为5cm就是圆锥的母线长是5cm就可以根据勾股定理求出圆锥的高【详解】设底面圆的半径是r,则2r=6,r=3cm,圆锥的高=4cm故答案为4.18、1【解析】分析:根据题意得出点B的坐标,根据面积平分得出点D的坐标,利用三角形相似可得点A的坐标,从而求出k的值详解:根据一次函数可得:点B的坐标为(1,0), BD平分ABC的面积,BC=3点D的横坐标1.5, 点D的坐标为, DE:AB
20、=1:1, 点A的坐标为(1,1), k=11=1点睛:本题主要考查的是反比例函数的性质以及三角形相似的应用,属于中等难度的题型得出点D的坐标是解决这个问题的关键三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)30;(2)当x3.9时,轿车与货车相遇;(3)在两车行驶过程中,当轿车与货车相距20千米时,x的值为3.5或4.3小时【解析】(1)根据图象可知货车5小时行驶300千米,由此求出货车的速度为60千米/时,再根据图象得出货车出发后4.5小时轿车到达乙地,由此求出轿车到达乙地时,货车行驶的路程为270千米,而甲、乙两地相距300千米,则此时货车距
21、乙地的路程为:30027030千米;(2)先求出线段CD对应的函数关系式,再根据两直线的交点即可解答;(3)分两种情形列出方程即可解决问题【详解】解:(1)根据图象信息:货车的速度V货,轿车到达乙地的时间为货车出发后4.5小时,轿车到达乙地时,货车行驶的路程为:4.560270(千米),此时,货车距乙地的路程为:30027030(千米)所以轿车到达乙地后,货车距乙地30千米故答案为30;(2)设CD段函数解析式为ykx+b(k0)(2.5x4.5)C(2.5,80),D(4.5,300)在其图象上,解得,CD段函数解析式:y110x195(2.5x4.5);易得OA:y60x,解得,当x3.9
22、时,轿车与货车相遇;(3)当x2.5时,y货150,两车相距150807020,由题意60x(110x195)20或110x19560x20,解得x3.5或4.3小时答:在两车行驶过程中,当轿车与货车相距20千米时,x的值为3.5或4.3小时【点睛】本题考查了一次函数的应用,对一次函数图象的意义的理解,待定系数法求一次函数的解析式的运用,行程问题中路程速度时间的运用,本题有一定难度,其中求出货车与轿车的速度是解题的关键20、 (1)y=3.4x+141.1;(1)当装运核桃的汽车为2辆、装运甘蓝的汽车为12辆、装运花椒的汽车为1辆时,总利润最大,最大利润为117.4万元【解析】(1)根据题意可
23、以得装运甘蓝的汽车为(1x+1)辆,装运花椒的汽车为30x(1x+1)=(123x)辆,从而可以得到y与x的函数关系式;(1)根据装花椒的汽车不超过8辆,可以求得x的取值范围,从而可以得到y的最大值,从而可以得到总利润最大时,装运各种产品的车辆数【详解】(1)若装运核桃的汽车为x辆,则装运甘蓝的汽车为(1x+1)辆,装运花椒的汽车为30x(1x+1)=(123x)辆,根据题意得:y=100.7x+40.5(1x+1)+60.8(123x)=3.4x+141.1(1)根据题意得:,解得:7x,x为整数,7x210.60,y随x增大而减小,当x=7时,y取最大值,最大值=3.47+141.1=11
24、7.4,此时:1x+1=12,123x=1答:当装运核桃的汽车为2辆、装运甘蓝的汽车为12辆、装运花椒的汽车为1辆时,总利润最大,最大利润为117.4万元【点睛】本题考查了一次函数的应用,解题的关键是熟练的掌握一次函数的应用.21、(1)作图见解析;(2)证明书见解析.【解析】(1)以点N为圆心,以MQ长度为半径画弧,以点M为圆心,以NQ长度为半径画弧,两弧交于一点F,则MNF为所画三角形(2)延长DA至E,使得AE=CB,连结CE证明EACBCA,得:B =E,AB=CE,根据等量代换可以求得答案【详解】解:(1)如图1,以N 为圆心,以MQ 为半径画圆弧;以M 为圆心,以NQ 为半径画圆弧
25、;两圆弧的交点即为所求(2)如图,延长DA至E,使得AE=CB,连结CEACB +CAD =180,DACDAC +EAC =180,BACBCA =EAC.在EAC和BAC中,AECE,ACCA,EACBCN,AECEACBCA (SAS).B=E,AB=CE.B=D,D=E.CD=CE,CD=AB考点:1.尺规作图;2.全等三角形的判定和性质22、(1)见解析(2)【解析】试题分析:(1)利用平行四边形的性质和菱形的性质即可判定四边形AECF是菱形;(2)连接EF交于点O,运用解直角三角形的知识点,可以求得AC与EF的长,再利用菱形的面积公式即可求得菱形AECF的面积试题解析:(1)证明:
26、四边形ABCD是平行四边形,ADBC,AD=BC在RtABC中,BAC=90,点E是BC边的中点,AE=CE=BC同理,AF=CF=ADAF=CE四边形AECF是平行四边形平行四边形AECF是菱形(2)解:在RtABC中,BAC=90,B=30,BC=10,AC=5,AB=连接EF交于点O,ACEF于点O,点O是AC中点OE=EF=菱形AECF的面积是ACEF=考点:1菱形的性质和面积;2平行四边形的性质;3解直角三角形23、(1)y=(0x4);(2) 不能为正方形,添加条件:AC=BC时,当点D运动到AB中点位置时四边形CDBF为正方形【解析】分析:(1)根据平移的性质得到DFAC,所以由
27、平行线的性质、勾股定理求得GD=,BG=,所以由三角形的面积公式列出函数关系式;(2)不能为正方形,添加条件:AC=BC时,点D运动到AB中点时,四边形CDBF为正方形;当D运动到AB中点时,四边形CDBF是菱形,根据“直角三角形斜边上的中线等于斜边的一半”推知CD=AB,BF=DE,所以AD=CD=BD=CF,又有BE=AD,则CD=BD=BF=CF,故四边形CDBF是菱形,根据有一内角为直角的菱形是正方形来添加条件.详解:(1)如图(1)DFAC,DGB=C=90,GDB=A=60,GBD=30BD=4x,GD=,BG=y=SBDG=(0x4);(2)不能为正方形,添加条件:AC=BC时,
28、当点D运动到AB中点位置时四边形CDBF为正方形ACB=DFE=90,D是AB的中点CD=AB,BF=DE,CD=BD=BF=BE,CF=BD,CD=BD=BF=CF,四边形CDBF是菱形;AC=BC,D是AB的中点CDAB即CDB=90四边形CDBF为菱形,四边形CDBF是正方形点睛:本题是几何变换综合题型,主要考查了平移变换的性质,勾股定理,正方形的判定,菱形的判定与性质以及直角三角形斜边上的中线.(2)难度稍大,根据三角形斜边上的中线推知CD=BD=BF=BE是解题的关键.24、 (1)35元;(2)30元【解析】(1)由题意得,每月销售量与销售单价之间的关系可近似看作一次函数,利润=(
29、定价-进价)销售量,从而列出关系式,利用配方法得出最值;(2)令w=2000,然后解一元二次方程,从而求出销售单价【详解】解:(1)由题意,得:W=(x-20)y=(x-20)(-10x+1)=-10x2+700x-10000=-10(x-35)2+2250 当x=35时,W取得最大值,最大值为2250,答:当销售单价定为35元时,每月可获得最大利润为2250元; (2)由题意,得:,解得:, 销售单价不得高于32元, 销售单价应定为30元答:李明想要每月获得2000元的利润,销售单价应定为30元【点睛】本题考查二次函数的性质及其应用,还考查抛物线的基本性质,另外将实际问题转化为求函数最值问题
30、,从而来解决实际问题25、(1)见解析;(2) 【解析】(1)根据题意作出图形即可;(2)由(1)知,PD=PD,根据余角的性质得到ADP=BPD,根据全等三角形的性质得到AD=PB=4,得到AP=2;根据勾股定理得到PD=2,根据三角函数的定义即可得到结论【详解】(1)连接PD,以P为圆心,PD为半径画弧交BC于D,过P作DD的垂线交CD于Q,则直线PQ即为所求;(2)由(1)知,PD=PD,PDPD,DPD=90,A=90,ADP+APD=APD+BPD=90,ADP=BPD,在ADP与BPD中,ADPBPD,AD=PB=4,AP= BDPB=ABAP=6AP=4,AP=2;PD=2,BD
31、=2CD=BC- BD=4-2=2PD=PD,PDPD,DD=PD=2,PQ垂直平分DD,连接Q D则DQ= DQQDD=QDDsinQDD=sinQDD=【点睛】本题考查了作图-轴对称变换,矩形的性质,折叠的性质,全等三角形的判定和性质,等腰直角三角形的性质,正确的作出图形是解题的关键26、(1);(1)11. 【解析】(1)根据正切的定义求出OA,证明BAOBEC,根据相似三角形的性质计算;(1)求出直线AB的解析式,解方程组求出点D的坐标,根据三角形CDE的面积=三角形CBE的面积+三角形BED的面积计算即可【详解】解:(1)tanABO=,OB=4,OA=1,OE=1,BE=6,AOC
32、E,BAOBEC,=,即=,解得,CE=3,即点C的坐标为(1,3),反比例函数的解析式为:;(1)设直线AB的解析式为:y=kx+b,则,解得,则直线AB的解析式为:,解得,当D的坐标为(6,1),三角形CDE的面积=三角形CBE的面积+三角形BED的面积=63+61=11【点睛】此题考查的是反比例函数与一次函数的交点问题,掌握待定系数法求函数解析式的一般步骤、求反比例函数与一次函数的交点的方法是解题的关键27、大型标牌上端与下端之间的距离约为3.5m【解析】试题分析:将题目中的仰俯角转化为直角三角形的内角的度数,分别求得CE和BE的长,然后求得DE的长,用CE的长减去DE的长即可得到上端和下端之间的距离试题解析:设AB,CD 的延长线相交于点E,CBE=45,CEAE,CE=BE,CE=16.651.65=15,BE=15,而AE=AB+BE=1DAE=30,DE11.54,CD=CEDE=1511.543.5 (m ),答:大型标牌上端与下端之间的距离约为3.5m