四川省乐山市五通桥区重点中学2022-2023学年中考数学猜题卷含解析.doc

上传人:lil****205 文档编号:87997094 上传时间:2023-04-19 格式:DOC 页数:21 大小:1.10MB
返回 下载 相关 举报
四川省乐山市五通桥区重点中学2022-2023学年中考数学猜题卷含解析.doc_第1页
第1页 / 共21页
四川省乐山市五通桥区重点中学2022-2023学年中考数学猜题卷含解析.doc_第2页
第2页 / 共21页
点击查看更多>>
资源描述

《四川省乐山市五通桥区重点中学2022-2023学年中考数学猜题卷含解析.doc》由会员分享,可在线阅读,更多相关《四川省乐山市五通桥区重点中学2022-2023学年中考数学猜题卷含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1某校体育节有13名同学参加女子百米赛跑,它们预赛的成绩各不相同,取前6名参加决赛小颖已经知道了自己的

2、成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的( )A方差 B极差 C中位数 D平均数2甲、乙两超市在1月至8月间的盈利情况统计图如图所示,下面结论不正确的是()A甲超市的利润逐月减少B乙超市的利润在1月至4月间逐月增加C8月份两家超市利润相同D乙超市在9月份的利润必超过甲超市3如图,四边形ABCD是菱形,AC=8,DB=6,DHAB于H,则DH=( )ABC12D244在1、1、3、2这四个数中,最大的数是()A1B1C3D25关于的不等式的解集如图所示,则的取值是A0BCD6如图,A点是半圆上一个三等分点,B点是弧AN的中点,P点是直径MN上一动点,O的半径为1,则APBP的

3、最小值为A1BCD7如图,把一个矩形纸片ABCD沿EF折叠后,点D、C分别落在D、C的位置,若EFB=65,则AED为( )。A70B65C50D258如图,已知ABC的三个顶点均在格点上,则cosA的值为( )ABCD9如图,ABCD对角线AC与BD交于点O,且AD3,AB5,在AB延长线上取一点E,使BEAB,连接OE交BC于F,则BF的长为()ABCD110如图,在ABC和BDE中,点C在边BD上,边AC交边BE于点F,若AC=BD,AB=ED,BC=BE,则ACB等于()AEDBBBEDCEBDD2ABF11对于命题“如果1+190,那么11”能说明它是假命题的是()A150,140B

4、140,150C130,160D114512如图,在矩形ABCD中,P、R分别是BC和DC上的点,E、F分别是AP和RP的中点,当点P在BC上从点B向点C移动,而点R不动时,下列结论正确的是( )A线段EF的长逐渐增长B线段EF的长逐渐减小C线段EF的长始终不变D线段EF的长与点P的位置有关二、填空题:(本大题共6个小题,每小题4分,共24分)13下面是甲、乙两人10次射击成绩(环数)的条形统计图,通常新手的成绩不太确定,根据图中的信息,估计这两人中的新手是_14九章算术是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,其中方程术是重要的数学成就.书中有一个方程问题:今有醇酒一斗,直钱

5、五十;行酒一斗,直钱一十.今将钱三十,得酒二斗.问醇、行酒各得几何?意思是:今有美酒一斗,价格是50钱;普通酒一斗,价格是10钱.现在买两种酒2斗共付30钱,问买美酒、普通酒各多少?设买美酒x斗,买普通酒y斗,则可列方程组为_.15如图,D,E分别是ABC的边AB、BC上的点,且DEAC,AE、CD相交于点O,若SDOE:SCOA=1:16,则SBDE与SCDE的比是_16若a2+32b,则a32ab+3a_17一组数据7,9,8,7,9,9,8的中位数是_18小青在八年级上学期的数学成绩如下表所示平时测验期中考试期末考试成绩869081如果学期总评成绩根据如图所示的权重计算,小青该学期的总评

6、成绩是_分三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)已知抛物线y=x26x+9与直线y=x+3交于A,B两点(点A在点B的左侧),抛物线的顶点为C,直线y=x+3与x轴交于点D(1)求抛物线的顶点C的坐标及A,B两点的坐标;(2)将抛物线y=x26x+9向上平移1个单位长度,再向左平移t(t0)个单位长度得到新抛物线,若新抛物线的顶点E在DAC内,求t的取值范围;(3)点P(m,n)(3m1)是抛物线y=x26x+9上一点,当PAB的面积是ABC面积的2倍时,求m,n的值20(6分)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本

7、,且不高于80元经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:售价x/(元/千克)506070销售量y/千克1008060 (1)求y与x之间的函数表达式;设商品每天的总利润为W(元),求W与x之间的函数表达式(利润收入成本);试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少时获得最大利润,最大利润是多少?21(6分)先化简,后求值:a2a4a8a2+(a3)2,其中a=122(8分)如图,在平面直角坐标系中,一次函数yx+2的图象交x轴于点P,二次函数yx2+x+m的图象与x轴的交点为(x1,0)、(x2,0),且+17(1)求二次

8、函数的解析式和该二次函数图象的顶点的坐标(2)若二次函数yx2+x+m的图象与一次函数yx+2的图象交于A、B两点(点A在点B的左侧),在x轴上是否存在点M,使得MAB是以ABM为直角的直角三角形?若存在,请求出点M的坐标;若不存在,请说明理由23(8分)如图,已知抛物线的对称轴为直线,且抛物线与轴交于、两点,与轴交于点,其中,.(1)若直线经过、两点,求直线和抛物线的解析式;(2)在抛物线的对称轴上找一点,使点到点的距离与到点的距离之和最小,求出点的坐标;(3)设点为抛物线的对称轴上的一个动点,求使为直角三角形的点的坐标.24(10分)如图,已知ABCD是边长为3的正方形,点P在线段BC上,

9、点G在线段AD上,PDPG,DFPG于点H,交AB于点F,将线段PG绕点P逆时针旋转90得到线段PE,连接EF(1)求证:DFPG;(2)若PC1,求四边形PEFD的面积25(10分)已知点E为正方形ABCD的边AD上一点,连接BE,过点C作CNBE,垂足为M,交AB于点N(1)求证:ABEBCN;(2)若N为AB的中点,求tanABE26(12分)已知,抛物线的顶点为,它与轴交于点,(点在点左侧)()求点、点的坐标;()将这个抛物线的图象沿轴翻折,得到一个新抛物线,这个新抛物线与直线交于点求证:点是这个新抛物线与直线的唯一交点;将新抛物线位于轴上方的部分记为,将图象以每秒个单位的速度向右平移

10、,同时也将直线以每秒个单位的速度向上平移,记运动时间为,请直接写出图象与直线有公共点时运动时间的范围27(12分)如图,将矩形ABCD沿对角线BD折叠,使点C落在点E处,BE与AD交于点F(1)求证:ABFEDF;(2)若AB=6,BC=8,求AF的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】13个不同的分数按从小到大排序后,中位数及中位数之后的共有7个数,故只要知道自己的分数和中位数就可以知道是否获奖了故选C2、D【解析】【分析】根据折线图中各月的具体数据对四个选项逐一分析可得【详解】A、甲超市的利润逐月减

11、少,此选项正确,不符合题意;B、乙超市的利润在1月至4月间逐月增加,此选项正确,不符合题意;C、8月份两家超市利润相同,此选项正确,不符合题意;D、乙超市在9月份的利润不一定超过甲超市,此选项错误,符合题意,故选D【点睛】本题主要考查折线统计图,折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来以折线的上升或下降来表示统计数量增减变化3、A【解析】解:如图,设对角线相交于点O,AC=8,DB=6,AO=AC=8=4,BO=BD=6=3,由勾股定理的,AB=5,DHAB,S菱形ABCD=ABDH=ACBD,即5DH=86,解得DH=故选A【点睛】本题考查菱形的

12、性质4、C【解析】有理数大小比较的法则:正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小,据此判断即可【详解】解:根据有理数比较大小的方法,可得-2-111,在1、-1、1、-2这四个数中,最大的数是1故选C【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小5、D【解析】首先根据不等式的性质,解出x,由数轴可知,x-1,所以=-1,解出即可;【详解】解:不等式,解得x,由数轴可知,所以,解得;故选:【点睛】本题主要考查了不等式的解法和在数轴上表示不等式的解集,在

13、表示解集时“”,“”要用实心圆点表示;“”,“”要用空心圆点表示6、C【解析】作点A关于MN的对称点A,连接AB,交MN于点P,则PA+PB最小,连接OA,AA.点A与A关于MN对称,点A是半圆上的一个三等分点,AON=AON=60,PA=PA,点B是弧AN的中点,BON=30 ,AOB=AON+BON=90,又OA=OA=1,AB=PA+PB=PA+PB=AB=故选:C.7、C【解析】首先根据ADBC,求出FED的度数,然后根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,则可知DEF=FED,最后求得AED的大小【详解】解:ADBC,EFB=FED=65,由折叠

14、的性质知,DEF=FED=65,AED=180-2FED=50,故选:C【点睛】此题考查了长方形的性质与折叠的性质此题比较简单,解题的关键是注意数形结合思想的应用8、D【解析】过B点作BDAC,如图,由勾股定理得,AB=,AD=,cosA=,故选D9、A【解析】首先作辅助线:取AB的中点M,连接OM,由平行四边形的性质与三角形中位线的性质,即可求得:EFBEOM与OM的值,利用相似三角形的对应边成比例即可求得BF的值【详解】取AB的中点M,连接OM,四边形ABCD是平行四边形,ADBC,OB=OD,OMADBC,OM=AD=3=,EFBEOM,AB=5,BE=AB,BE=2,BM=,EM=+2

15、=,BF=,故选A【点睛】此题考查了平行四边形的性质、相似三角形的判定与性质等知识解此题的关键是准确作出辅助线,合理应用数形结合思想解题10、C【解析】根据全等三角形的判定与性质,可得ACB=DBE的关系,根据三角形外角的性质,可得答案.【详解】在ABC和DEB中,所以ABCBDE(SSS),所以ACB=DBE.故本题正确答案为C.【点睛】.本题主要考查全等三角形的判定与性质,熟悉掌握是关键.11、D【解析】能说明是假命题的反例就是能满足已知条件,但不满足结论的例子【详解】“如果1+190,那么11”能说明它是假命题为1145故选:D【点睛】考查了命题与定理的知识,理解能说明它是假命题的反例的

16、含义是解决本题的关键12、C【解析】试题分析:连接AR,根据勾股定理得出AR=的长不变,根据三角形的中位线定理得出EF=AR,即可得出线段EF的长始终不变,故选C考点:1、矩形性质,2、勾股定理,3、三角形的中位线二、填空题:(本大题共6个小题,每小题4分,共24分)13、甲【解析】根据方差的意义可作出判断方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定,方差越大,数据不稳定,则为新手.【详解】通过观察条形统计图可知:乙的成绩更整齐,也相对更稳定,甲的方差大于乙的方差.故答案为:甲.【点睛】本题考查的知识点是方差,条形统计图,

17、解题的关键是熟练的掌握方差,条形统计图.14、【解析】设买美酒x斗,买普通酒y斗,根据“美酒一斗的价格是50钱、买两种酒2斗共付30钱”列出方程组【详解】依题意得:故答案为【点睛】考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组15、1:3【解析】根据相似三角形的判定,由DEAC,可知DOECOA,BDEBCA,然后根据相似三角形的面积比等于相似比的平方,可由,求得DE:AC=1:4,即BE:BC=1:4,因此可得BE:EC=1:3,最后根据同高不同底的三角形的面积可知与的比是1:3.故答案为1:3.16、1【解析】利用提公因式法将多项式

18、分解为a(a2+3)-2ab,将a2+3=2b代入可求出其值【详解】解:a2+3=2b,a3-2ab+3a=a(a2+3)-2ab=2ab-2ab=1,故答案为1【点睛】本题考查了因式分解的应用,利用提公因式法将多项式分解是本题的关键17、1【解析】将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数,据此可得【详解】解:将数据重新排列为7、7、1、1、9、9、9,所以这组数据的中位数为1,故答案为1【点睛】本题主要考查中位数,解题的关键是掌握中位数的定义18、84.2【

19、解析】小青该学期的总评成绩为:8610%+9030%+8160%=84.2(分),故答案为: 84.2.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)C(2,0),A(1,4),B(1,9);(2)t5;(2)m=,n=.【解析】分析:()将抛物线的一般式配方为顶点式即可求出点C的坐标,联立抛物线与直线的解析式即可求出A、B的坐标 ()由题意可知:新抛物线的顶点坐标为(2t,1),然后求出直线AC的解析式后,将点E的坐标分别代入直线AC与AD的解析式中即可求出t的值,从而可知新抛物线的顶点E在DAC内,求t的取值范围 ()直线AB与y轴交于点F,连

20、接CF,过点P作PMAB于点M,PNx轴于点N,交DB于点G,由直线y=x+2与x轴交于点D,与y轴交于点F,得D(2,0),F(0,2),易得CFAB,PAB的面积是ABC面积的2倍,所以ABPM=ABCF,PM=2CF=1,从而可求出PG=3,利用点G在直线y=x+2上,P(m,n),所以G(m,m+2),所以PG=n(m+2),所以n=m+4,由于P(m,n)在抛物线y=x21x+9上,联立方程从而可求出m、n的值详解:(I)y=x21x+9=(x2)2,顶点坐标为(2,0) 联立, 解得:或; (II)由题意可知:新抛物线的顶点坐标为(2t,1),设直线AC的解析式为y=kx+b 将A

21、(1,4),C(2,0)代入y=kx+b中, 解得:, 直线AC的解析式为y=2x+1 当点E在直线AC上时,2(2t)+1=1,解得:t= 当点E在直线AD上时,(2t)+2=1,解得:t=5,当点E在DAC内时,t5; (III)如图,直线AB与y轴交于点F,连接CF,过点P作PMAB于点M,PNx轴于点N,交DB于点G由直线y=x+2与x轴交于点D,与y轴交于点F,得D(2,0),F(0,2),OD=OF=2 FOD=90,OFD=ODF=45 OC=OF=2,FOC=90,CF=2,OFC=OCF=45, DFC=DFO+OFC=45+45=90,CFAB PAB的面积是ABC面积的2

22、倍,ABPM=ABCF, PM=2CF=1 PNx轴,FDO=45,DGN=45,PGM=45在RtPGM中,sinPGM=, PG=3 点G在直线y=x+2上,P(m,n), G(m,m+2) 2m1,点P在点G的上方,PG=n(m+2),n=m+4 P(m,n)在抛物线y=x21x+9上,m21m+9=n,m21m+9=m+4,解得:m= 2m1,m=不合题意,舍去,m=,n=m+4= 点睛:本题是二次函数综合题,涉及待定系数法,解方程,勾股定理,三角形的面积公式,综合程度较高,需要学生综合运用所学知识20、 (1)y2x200 (2)W2x2280x8 000(3)售价为70元时,获得最

23、大利润,这时最大利润为1 800元【解析】(1)用待定系数法求一次函数的表达式;(2)利用利润的定义,求与之间的函数表达式;(3)利用二次函数的性质求极值.【详解】解:(1)设,由题意,得,解得,所求函数表达式为.(2).(3),其中,当时,随的增大而增大,当时,随的增大而减小,当售价为70元时,获得最大利润,这时最大利润为1800元.考点: 二次函数的实际应用.21、1【解析】先进行同底数幂的乘除以及幂的乘方运算,再合并同类项得到化简后的式子,将a的值代入化简后的式子计算即可.【详解】原式=a6a6+a6=a6,当a=1时,原式=1【点睛】本题主要考查同底数幂的乘除以及幂的乘方运算法则.22

24、、(1)yx2+x+2(x)2+,顶点坐标为(,);(2)存在,点M(,0)理由见解析【解析】(1)由根与系数的关系,结合已知条件可得9+4m17,解方程求得m的值,即可得求得二次函数的解析式,再求得该二次函数图象的顶点的坐标即可;(2)存在,将抛物线表达式和一次函数yx+2联立并解得x0或,即可得点A、B的坐标为(0,2)、(,),由此求得PB=, AP=2,过点B作BMAB交x轴于点M,证得APOMPB,根据相似三角形的性质可得 ,代入数据即可求得MP,再求得OM,即可得点M的坐标为(,0)【详解】(1)由题意得:x1+x23,x1x22m,x12+x22(x1+x2)22x1x217,即

25、:9+4m17,解得:m2,抛物线的表达式为:yx2+x+2(x)2+,顶点坐标为(,);(2)存在,理由:将抛物线表达式和一次函数yx+2联立并解得:x0或,点A、B的坐标为(0,2)、(,),一次函数yx+2与x轴的交点P的坐标为(6,0),点P的坐标为(6,0),B的坐标为(,),点B的坐标为(0,2)、PB=,AP=2过点B作BMAB交x轴于点M,MBPAOP90,MPBAPO,APOMPB, , ,MP,OMOPMP6,点M(,0)【点睛】本题是一道二次函数的综合题,一元二次方程根与系数的关系、直线与抛物线的较大坐标相似三角形的判定与性质,题目较为综合,有一定的难度,解决第二问的关键

26、是求得PB、AP的长,再利用相似三角形的性质解决问题23、(1)抛物线的解析式为,直线的解析式为.(2);(3)的坐标为或或或.【解析】分析:(1)先把点A,C的坐标分别代入抛物线解析式得到a和b,c的关系式,再根据抛物线的对称轴方程可得a和b的关系,再联立得到方程组,解方程组,求出a,b,c的值即可得到抛物线解析式;把B、C两点的坐标代入直线y=mx+n,解方程组求出m和n的值即可得到直线解析式;(2)设直线BC与对称轴x=-1的交点为M,此时MA+MC的值最小把x=-1代入直线y=x+3得y的值,即可求出点M坐标;(3)设P(-1,t),又因为B(-3,0),C(0,3),所以可得BC2=

27、18,PB2=(-1+3)2+t2=4+t2,PC2=(-1)2+(t-3)2=t2-6t+10,再分三种情况分别讨论求出符合题意t值即可求出点P的坐标详解:(1)依题意得:,解得:,抛物线的解析式为.对称轴为,且抛物线经过,把、分别代入直线,得,解之得:,直线的解析式为.(2)直线与对称轴的交点为,则此时的值最小,把代入直线得,.即当点到点的距离与到点的距离之和最小时的坐标为.(注:本题只求坐标没说要求证明为何此时的值最小,所以答案未证明的值最小的原因).(3)设,又,若点为直角顶点,则,即:解得:,若点为直角顶点,则,即:解得:,若点为直角顶点,则,即:解得:,.综上所述的坐标为或或或.点

28、睛:本题综合考查了二次函数的图象与性质、待定系数法求函数(二次函数和一次函数)的解析式、利用轴对称性质确定线段的最小长度、难度不是很大,是一道不错的中考压轴题24、(1)证明见解析;(2)1.【解析】作PMAD,在四边形ABCD和四边形ABPM证ADPM;DFPG,得出GDH+DGH90,推出ADFMPG;还有两个直角即可证明ADFMPG,从而得出对应边相等(2)由已知得,DG2PC2;ADFMPG得出DFPD;根据旋转,得出EPG90,PEPG从而得出四边形PEFD为平行四边形;根据勾股定理和等量代换求出边长DF的值;根据相似三角形得出对应边成比例求出GH的值,从而求出高PH 的值;最后根据

29、面积公式得出【详解】解:(1)证明:四边形ABCD为正方形,ADAB,四边形ABPM为矩形,ABPM,ADPM,DFPG,DHG90,GDH+DGH90,MGP+MPG90,GDHMPG,在ADF和MPG中,ADFMPG(ASA),DFPG;(2)作PMDG于M,如图,PDPG,MGMD,四边形ABCD为矩形,PCDM为矩形,PCMD,DG2PC2;ADFMPG(ASA),DFPG,而PDPG,DFPD,线段PG绕点P逆时针旋转90得到线段PE,EPG90,PEPG,PEPDDF,而DFPG,DFPE,即DFPE,且DFPE,四边形PEFD为平行四边形,在RtPCD中,PC1,CD3,PD,D

30、FPGPD,四边形CDMP是矩形,PMCD3,MDPC1,PDPG,PMAD,MGMD1,DG2,GDHMPG,DHGPMG90,DHGPMG,GH,PHPGGH,四边形PEFD的面积DFPH1【点睛】本题考查了平行四边形的面积、勾股定理、相似三角形判定、全等三角形性质,本题的关键是求边长和高的值25、(1)证明见解析;(2)【解析】(1)根据正方形的性质得到ABBC,ACBN90,1290,根据垂线和三角形内角和定理得到2390,推出13,根据ASA推出ABEBCN;(2)tanABE,根据已知求出AE与AB的关系即可求得tanABE.【详解】(1)证明:四边形ABCD为正方形AB=BC,A

31、=CBN=90,1+2=90CMBE,2+3=901=3在ABE和BCN中,ABEBCN(ASA);(2)N为AB中点,BN=AB又ABEBCN,AE=BN=AB在RtABE中,tanABE【点睛】本题主要考查了正方形的性质、三角形的内角和定理、垂线、全等三角形的性质和判定以及锐角三角函数等知识点的掌握和理解,证出ABEBCN是解此题的关键.26、(1)B(3,0),C(1,0);(2)见解析;t6.【解析】(1)根据抛物线的顶点坐标列方程,即可求得抛物线的解析式,令y0,即可得解;(2)根据翻折的性质写出翻折后的抛物线的解析式,与直线方程联立,求得交点坐标即可;当t0时,直线与抛物线只有一个

32、交点N(3,6)(相切),此时直线与G无交点;第一个交点出现时,直线过点C(1 t,0),代入直线解析式:y4x6t,解得t;最后一个交点是B(3t,0),代入y4x6t,解得t6,所以t6.【详解】(1)因为抛物线的顶点为M(1,2),所以对称轴为x1,可得:,解得:a,c,所以抛物线解析式为yx2x,令y0,解得x1或x3,所以B(3,0),C(1,0);(2)翻折后的解析式为yx2x,与直线y4x6联立可得:x23x0,解得:x1x23,所以该一元二次方程只有一个根,所以点N(3,6)是唯一的交点;t6.【点睛】本题主要考查了图形运动,解本题的要点在于熟知一元二次方程的相关知识点.27、

33、(1)见解析;(2) 【解析】(1)根据矩形的性质可得AB=CD,C=A=90,再根据折叠的性质可得DE=CD,C=E=90,然后利用“角角边”证明即可;(2)设AF=x,则BF=DF=8-x,根据勾股定理列方程求解即可【详解】(1)证明:在矩形ABCD中,AB=CD,A=C=90,由折叠得:DE=CD,C=E=90,AB=DE,A=E=90,AFB=EFD,ABFEDF(AAS);(2)解:ABFEDF,BF=DF,设AF=x,则BF=DF=8x,在RtABF中,由勾股定理得:BF2=AB2+AF2,即(8x)2=x2+62, x=,即AF=【点睛】本题考查了翻折变换的性质,全等三角形的判定与性质,矩形的性质,勾股定理,翻折前后对应边相等,对应角相等,利用勾股定理列出方程是解题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁