《北京市大兴区重点中学2023届中考数学五模试卷含解析.doc》由会员分享,可在线阅读,更多相关《北京市大兴区重点中学2023届中考数学五模试卷含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,O的半径OC与弦AB交于点D,连结OA,AC,CB,BO,则下列条件中,无法判断四边形OACB为菱形的是( )ADAC=DBC=30BOABC,OBACCAB与OC互相垂直DAB与OC互相平分2如图,按照三视图确定该几何体的侧面积是(单位:c
2、m)( )A24 cm2B48 cm2C60 cm2D80 cm23如图,在平面直角坐标系xOy中,由绕点P旋转得到,则点P的坐标为( )A(0, 1)B(1, -1)C(0, -1)D(1, 0)4如图,已知ABCD,DEAC,垂足为E,A120,则D的度数为()A30B60C50D405如图,将ABC沿DE,EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若DOF142,则C的度数为()A38B39C42D486下列基本几何体中,三视图都是相同图形的是()ABCD7语文课程标准规定:79年级学生,要求学会制订自己的阅读计划,广泛阅读各种类型的读物,课外阅读总量不少于260万字
3、,每学年阅读两三部名著那么260万用科学记数法可表示为()A26105B2.6102C2.6106D2601048如图所示的几何体的主视图是( )ABCD9据关于“十三五”期间全面深入推进教育信息化工作的指导意见显示,全国6000万名师生已通过“网络学习空间”探索网络条件下的新型教学、学习与教研模式,教育公共服务平台基本覆盖全国学生、教职工等信息基础数据库,实施全国中小学教师信息技术应用能力提升工程则数字6000万用科学记数法表示为()A6105B6106C6107D610810如图,ABC的面积为12,AC3,现将ABC沿AB所在直线翻折,使点C落在直线AD上的C处,P为直线AD上的一点,则
4、线段BP的长可能是()A3B5C6D1011下列运算正确的是()Aa6a2=a3 B(2a+b)(2ab)=4a2b2 C(a)2a3=a6 D5a+2b=7ab12已知a为整数,且a,则a等于A1B2C3D4二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,在ABC中,AD、BE分别是BC、AC两边中线,则=_14矩形纸片ABCD中,AB=3cm,BC=4cm,现将纸片折叠压平,使A与C重合,设折痕为EF,则重叠部分AEF的面积等于_15已知抛物线与直线在之间有且只有一个公共点,则的取值范围是_16如图,在四边形纸片ABCD中,ABBC,ADCD,AC90,B150.将纸片先沿
5、直线BD对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平.若铺平后的图形中有一个是面积为2的平行四边形,则CD_.17如图所示,点C在反比例函数的图象上,过点C的直线与x轴、y轴分别交于点A、B,且,已知的面积为1,则k的值为_18不等式2x57(x5)的解集是_.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)已知2是关于x的方程x22mx+3m0的一个根,且这个方程的两个根恰好是等腰ABC的两条边长,则ABC的周长为_20(6分)在某市组织的大型商业演出活动中,对团体购买门票实行优惠,决定在原定票价基础上每张降价80元,这样
6、按原定票价需花费6000元购买的门票张数,现在只花费了4800元求每张门票原定的票价;根据实际情况,活动组织单位决定对于个人购票也采取优惠措施,原定票价经过连续二次降价后降为324元,求平均每次降价的百分率21(6分)已知:如图,在平面直角坐标系xOy中,抛物线的图像与x轴交于点A(3,0),与y轴交于点B,顶点C在直线上,将抛物线沿射线 AC的方向平移,当顶点C恰好落在y轴上的点D处时,点B落在点E处(1)求这个抛物线的解析式;(2)求平移过程中线段BC所扫过的面积;(3)已知点F在x轴上,点G在坐标平面内,且以点 C、E、F、G 为顶点的四边形是矩形,求点F的坐标 22(8分)如图,将矩形
7、ABCD沿对角线AC翻折,点B落在点F处,FC交AD于E求证:AFECDF;若AB=4,BC=8,求图中阴影部分的面积23(8分)计算:()-1+()0+-2cos3024(10分)已知:a是2的相反数,b是2的倒数,则(1)a=_,b=_;(2)求代数式a2b+ab的值25(10分)如图,在平面直角坐标系中,A为y轴正半轴上一点,过点A作x轴的平行线,交函数的图象于B点,交函数的图象于C,过C作y轴和平行线交BO的延长线于D(1)如果点A的坐标为(0,2),求线段AB与线段CA的长度之比;(2)如果点A的坐标为(0,a),求线段AB与线段CA的长度之比;(3)在(1)条件下,四边形AODC的
8、面积为多少?26(12分)阅读下面材料:已知:如图,在正方形ABCD中,边AB=a1按照以下操作步骤,可以从该正方形开始,构造一系列的正方形,它们之间的边满足一定的关系,并且一个比一个小操作步骤作法由操作步骤推断(仅选取部分结论)第一步在第一个正方形ABCD的对角线AC上截取AE=a1,再作EFAC于点E,EF与边BC交于点F,记CE=a2(i)EAFBAF(判定依据是);(ii)CEF是等腰直角三角形;(iii)用含a1的式子表示a2为:第二步以CE为边构造第二个正方形CEFG;第三步在第二个正方形的对角线CF上截取FH=a2,再作IHCF于点H,IH与边CE交于点I,记CH=a3:(iv)
9、用只含a1的式子表示a3为:第四步以CH为边构造第三个正方形CHIJ这个过程可以不断进行下去若第n个正方形的边长为an,用只含a1的式子表示an为请解决以下问题:(1)完成表格中的填空: ; ; ; ;(2)根据以上第三步、第四步的作法画出第三个正方形CHIJ(不要求尺规作图)27(12分)在ABC中,AB=AC,BAC=,点P是ABC内一点,且PAC+PCA=,连接PB,试探究PA、PB、PC满足的等量关系(1)当=60时,将ABP绕点A逆时针旋转60得到ACP,连接PP,如图1所示由ABPACP可以证得APP是等边三角形,再由PAC+PCA=30可得APC的大小为 度,进而得到CPP是直角
10、三角形,这样可以得到PA、PB、PC满足的等量关系为 ;(2)如图2,当=120时,参考(1)中的方法,探究PA、PB、PC满足的等量关系,并给出证明;(3)PA、PB、PC满足的等量关系为 参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】(1)DAC=DBC=30,AOC=BOC=60,又OA=OC=OB,AOC和OBC都是等边三角形,OA=AC=OC=BC=OB,四边形OACB是菱形;即A选项中的条件可以判定四边形OACB是菱形;(2)OABC,OBAC,四边形OACB是平行四边形,又OA=OB,四边形OACB是
11、菱形,即B选项中的条件可以判定四边形OACB是菱形;(3)由OC和AB互相垂直不能证明到四边形OACB是菱形,即C选项中的条件不能判定四边形OACB是菱形;(4)AB与OC互相平分,四边形OACB是平行四边形,又OA=OB,四边形OACB是菱形,即由D选项中的条件能够判定四边形OACB是菱形.故选C.2、A【解析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆锥的母线长和底面半径,从而确定其侧面积【详解】解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为6cm,底面半径为81=4cm,故侧面积=rl=6
12、4=14cm1故选:A【点睛】此题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查3、B【解析】试题分析:根据网格结构,找出对应点连线的垂直平分线的交点即为旋转中心.试题解析:由图形可知,对应点的连线CC、AA的垂直平分线过点(0,-1),根据旋转变换的性质,点(1,-1)即为旋转中心.故旋转中心坐标是P(1,-1)故选B.考点:坐标与图形变化旋转.4、A【解析】分析:根据平行线的性质求出C,求出DEC的度数,根据三角形内角和定理求出D的度数即可详解:ABCD,A+C=180 A=120,C=60 DEAC,DEC=90,D=180CDEC=30 故选A点睛:本题考
13、查了平行线的性质和三角形内角和定理的应用,能根据平行线的性质求出C的度数是解答此题的关键5、A【解析】分析:根据翻折的性质得出A=DOE,B=FOE,进而得出DOF=A+B,利用三角形内角和解答即可详解:将ABC沿DE,EF翻折,A=DOE,B=FOE,DOF=DOE+EOF=A+B=142,C=180AB=180142=38 故选A点睛:本题考查了三角形内角和定理、翻折的性质等知识,解题的关键是灵活运用这些知识解决问题,学会把条件转化的思想,属于中考常考题型6、C【解析】根据主视图、左视图、俯视图的定义,可得答案【详解】球的三视图都是圆,故选C【点睛】本题考查了简单几何体的三视图,熟记特殊几
14、何体的三视图是解题关键7、C【解析】科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数【详解】260万=2600000=故选C【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值8、C【解析】主视图就是从正面看,看列数和每一列的个数.【详解】解:由图可知,主视图如下故选C【点睛】考核知识点:组合体的三视图.9、C【解析】将一个数写成的形式,其中,n是正数,这种记数的方法叫做科学记数法,根据定义解答即
15、可.【详解】解:6000万61故选:C【点睛】此题考查科学记数法,当所表示的数的绝对值大于1时,n为正整数,其值等于原数中整数部分的数位减去1,当要表示的数的绝对值小于1时,n为负整数,其值等于原数中第一个非零数字前面所有零的个数的相反数,正确掌握科学记数法中n的值的确定是解题的关键.10、D【解析】过B作BNAC于N,BMAD于M,根据折叠得出CAB=CAB,根据角平分线性质得出BN=BM,根据三角形的面积求出BN,即可得出点B到AD的最短距离是8,得出选项即可【详解】解:如图:过B作BNAC于N,BMAD于M,将ABC沿AB所在直线翻折,使点C落在直线AD上的C处,CAB=CAB,BN=B
16、M,ABC的面积等于12,边AC=3,ACBN=12,BN=8,BM=8,即点B到AD的最短距离是8,BP的长不小于8,即只有选项D符合,故选D【点睛】本题考查的知识点是折叠的性质,三角形的面积,角平分线性质的应用,解题关键是求出B到AD的最短距离,注意:角平分线上的点到角的两边的距离相等11、B【解析】A选项:利用同底数幂的除法法则,底数不变,只把指数相减即可;B选项:利用平方差公式,应先把2a看成一个整体,应等于(2a)2-b2而不是2a2-b2,故本选项错误;C选项:先把(-a)2化为a2,然后利用同底数幂的乘法法则,底数不变,只把指数相加,即可得到;D选项:两项不是同类项,故不能进行合
17、并【详解】A选项:a6a2=a4,故本选项错误;B选项:(2a+b)(2a-b)=4a2-b2,故本选项正确;C选项:(-a)2a3=a5,故本选项错误;D选项:5a与2b不是同类项,不能合并,故本选项错误;故选:B【点睛】考查学生同底数幂的乘除法法则的运用以及对平方差公式的掌握,同时要求学生对同类项进行正确的判断12、B【解析】直接利用,接近的整数是1,进而得出答案【详解】a为整数,且a,a=1故选:【点睛】考查了估算无理数大小,正确得出无理数接近的有理数是解题关键二、填空题:(本大题共6个小题,每小题4分,共24分)13、 【解析】利用三角形中位线的性质定理以及相似三角形的性质即可解决问题
18、;【详解】AE=EC,BD=CD,DEAB,DE=AB,EDCABC,故答案是:【点睛】考查相似三角形的判定和性质、三角形中位线定理等知识,解题的关键是熟练掌握三角形中位线定理14、【解析】试题分析:要求重叠部分AEF的面积,选择AF作为底,高就等于AB的长;而由折叠可知AEF=CEF,由平行得CEF=AFE,代换后,可知AE=AF,问题转化为在RtABE中求AE因此设AE=x,由折叠可知,EC=x,BE=4x,在RtABE中,AB2+BE2=AE2,即32+(4x)2=x2,解得:x=,即AE=AF=,因此可求得=AFAB=3=考点:翻折变换(折叠问题)15、或【解析】联立方程可得,设,从而
19、得出的图象在上与x轴只有一个交点,当时,求出此时m的值;当时,要使在之间有且只有一个公共点,则当x=-2时和x=2时y的值异号,从而求出m的取值范围;【详解】联立可得:,令,抛物线与直线在之间有且只有一个公共点,即的图象在上与x轴只有一个交点,当时,即解得:,当时,当时,满足题意,当时,令,令,令代入解得:,此方程的另外一个根为:,故也满足题意,故的取值范围为:或故答案为: 或.【点睛】此题考查的是根据二次函数与一次函数的交点问题,求函数中参数的取值范围,掌握把函数的交点问题转化为一元二次方程解的问题是解决此题的关键16、或 【解析】根据裁开折叠之后平行四边形的面积可得CD的长度为2+4或2+
20、【详解】如图,当四边形ABCE为平行四边形时,作AEBC,延长AE交CD于点N,过点B作BTEC于点T.ABBC,四边形ABCE是菱形BADBCD90,ABC150,ADC30,BANBCE30,NAD60,AND90.设BTx,则CNx,BCEC2x.四边形ABCE面积为2,ECBT2,即2xx2,解得x1,AEEC2,EN ,ANAEEN2 ,CDAD2AN42.如图,当四边形BEDF是平行四边形,BEBF,平行四边形BEDF是菱形AC90,ABC150,ADBBDC15.BEDE,EBDADB15,AEB30.设ABy,则DEBE2y,AEy.四边形BEDF的面积为2,ABDE2,即2y
21、22,解得y1,AE,DE2,ADAEDE2.综上所述,CD的值为42或2.【点睛】考核知识点:平行四边形的性质,菱形判定和性质17、1【解析】根据题意可以设出点A的坐标,从而以得到点C和点B的坐标,再根据的面积为1,即可求得k的值【详解】解:设点A的坐标为,过点C的直线与x轴,y轴分别交于点A,B,且,的面积为1,点,点B的坐标为,解得,故答案为:1【点睛】本题考查了反比例函数系数k的几何意义、一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征,解题关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答18、x【解析】解:去括号得:2x57x+5,移项、合并得:3x17,解得:
22、x故答案为:x三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、11【解析】将x=2代入方程找出关于m的一元一次方程,解一元一次方程即可得出m的值,将m的值代入原方程解方程找出方程的解,再根据等腰三角形的性质结合三角形的三边关系即可得出三角形的三条边,根据三角形的周长公式即可得出结论【详解】将x=2代入方程,得:11m+3m=0,解得:m=1当m=1时,原方程为x28x+12=(x2)(x6)=0,解得:x1=2,x2=6,2+2=16,此等腰三角形的三边为6、6、2,此等腰三角形的周长C=6+6+2=11【点睛】考点:根与系数的关系;一元二次方程的解;等腰
23、三角形的性质20、(1)1(2)10%【解析】试题分析:(1)设每张门票的原定票价为x元,则现在每张门票的票价为(x-80)元,根据“按原定票价需花费6000元购买的门票张数,现在只花费了4800元”建立方程,解方程即可;(2)设平均每次降价的百分率为y,根据“原定票价经过连续二次降价后降为324元”建立方程,解方程即可试题解析:(1)设每张门票的原定票价为x元,则现在每张门票的票价为(x-80)元,根据题意得,解得x=1经检验,x=1是原方程的根答:每张门票的原定票价为1元;(2)设平均每次降价的百分率为y,根据题意得1(1-y)2=324,解得:y1=0.1,y2=1.9(不合题意,舍去)
24、答:平均每次降价10%考点:1.一元二次方程的应用;2.分式方程的应用21、(1)抛物线的解析式为;(2)12; (1)满足条件的点有F1(,0),F2(,0),F1(,0),F4(,0).【解析】分析:(1)根据对称轴方程求得b=4a,将点A的坐标代入函数解析式求得9a+1b+1=0,联立方程组,求得系数的值即可; (2)抛物线在平移的过程中,线段BC所扫过的面积为平行四边形BCDE的面积,根据二次函数图象上点的坐标特征和三角形的面积得到: (1)联结CE分类讨论:(i)当CE为矩形的一边时,过点C作CF1CE,交x轴于点F1,设点F1(a,0)在RtOCF1中,利用勾股定理求得a的值; (
25、ii)当CE为矩形的对角线时,以点O为圆心,OC长为半径画弧分别交x轴于点F1、F4,利用圆的性质解答详解:(1)顶点C在直线x=2上,b=4a 将A(1,0)代入y=ax2+bx+1,得:9a+1b+1=0,解得:a=1,b=4,抛物线的解析式为y=x24x+1 (2)过点C作CMx轴,CNy轴,垂足分别为M、N y=x24x+1(x2)21,C(2,1) CM=MA=1,MAC=45,ODA=45,OD=OA=1 抛物线y=x24x+1与y轴交于点B,B(0,1),BD=2 抛物线在平移的过程中,线段BC所扫过的面积为平行四边形BCDE的面积, (1)联结CE 四边形BCDE是平行四边形,
26、点O是对角线CE与BD的交点,即 (i)当CE为矩形的一边时,过点C作CF1CE,交x轴于点F1,设点F1(a,0)在RtOCF1中,即 a2=(a2)2+5,解得: ,点 同理,得点; (ii)当CE为矩形的对角线时,以点O为圆心,OC长为半径画弧分别交x轴于点F1、F4,可得: ,得点、 综上所述:满足条件的点有), 点睛:本题考查了待定系数法求二次函数的解析式,二次函数图象上点的坐标特征,平行四边形的面积公式,正确的理解题意是解题的关键22、(1)证明见解析;(2)1【解析】试题分析:(1)根据矩形的性质得到AB=CD,B=D=90,根据折叠的性质得到E=B,AB=AE,根据全等三角形的
27、判定定理即可得到结论;(2)根据全等三角形的性质得到AF=CF,EF=DF,根据勾股定理得到DF=3,根据三角形的面积公式即可得到结论试题解析:(1)四边形ABCD是矩形,AB=CD,B=D=90,将矩形ABCD沿对角线AC翻折,点B落在点E处,E=B,AB=AE,AE=CD,E=D,在AEF与CDF中,E=D,AFE=CFD,AE=CD,AEFCDF;(2)AB=4,BC=8,CE=AD=8,AE=CD=AB=4,AEFCDF,AF=CF,EF=DF,DF2+CD2=CF2,即DF2+42=(8DF)2,DF=3,EF=3,图中阴影部分的面积=SACESAEF=4843=1点睛:本题考查了翻
28、折变换折叠的性质,熟练掌握折叠的性质是解题的关键23、4+2【解析】原式第一项利用负指数幂法则计算,第二项利用零指数幂法则计算,第三项化为最简二次根式,最后一项利用特殊角的三角函数值计算即可得到结果【详解】原式=3+1+3-2=4+224、2 【解析】试题分析:利用相反数和倒数的定义即可得出.先因式分解,再代入求出即可.试题解析:是的相反数,是的倒数,当时, 点睛:只有符号不同的两个数互为相反数.乘积为的两个数互为倒数.25、(1)线段AB与线段CA的长度之比为;(2)线段AB与线段CA的长度之比为;(3)1【解析】试题分析:(1)由题意把y=2代入两个反比例函数的解析式即可求得点B、C的横坐
29、标,从而得到AB、AC的长,即可得到线段AB与AC的比值;(2)由题意把y=a代入两个反比例函数的解析式即可求得用“a”表示的点B、C的横坐标,从而可得到AB、AC的长,即可得到线段AB与AC的比值;(3)由(1)可知,AB:AC=1:3,由此可得AB:BC=1:4,利用OA=2和平行线分线段成比例定理即可求得CD的长,从而可由梯形的面积公式求出四边形AODC的面积.试题解析:(1)A(0,2),BCx轴,B(1,2),C(3,2),AB=1,CA=3,线段AB与线段CA的长度之比为;(2)B是函数y=(x0)的一点,C是函数y=(x0)的一点,B(,a),C(,a),AB=,CA=,线段AB
30、与线段CA的长度之比为;(3)=,=,又OA=a,CDy轴,CD=4a,四边形AODC的面积为=(a+4a)=1 26、(1)斜边和一条直角边分别相等的两个直角三角形全等(1)a1;(1)2a1;(1)n1a1;(2)见解析.【解析】(1)由题意可知在RtEAF和RtBAF中,AE=AB,AF=AF,所以RtEAFRtBAF;由题意得AB=AE=a1,AC=a1,则CE=a2=a1a1=(1)a1;同上可知CF=CE=(1)a1,FH=EF=a2,则CH=a3=CFFH=(1)2a1;同理可得an=(1)n1a1;(2)根据题意画图即可.【详解】解:(1)斜边和一条直角边分别相等的两个直角三角
31、形全等;理由是:如图1,在RtEAF和RtBAF中,RtEAFRtBAF(HL);四边形ABCD是正方形,AB=BC=a1,ABC=90,AC=a1,AE=AB=a1,CE=a2=a1a1=(1)a1;四边形CEFG是正方形,CEF是等腰直角三角形,CF=CE=(1)a1,FH=EF=a2,CH=a3=CFFH=(1)a1(1)a1=(1)2a1;同理可得:an=(1)n1a1;故答案为斜边和一条直角边分别相等的两个直角三角形全等(1)a1;(1)2a1;(1)n1a1;(2)所画正方形CHIJ见右图.27、(1)150,(1)证明见解析(3) 【解析】(1)根据旋转变换的性质得到PAP为等边
32、三角形,得到PPC90,根据勾股定理解答即可;(1)如图1,作将ABP绕点A逆时针旋转110得到ACP,连接PP,作ADPP于D,根据余弦的定义得到PPPA,根据勾股定理解答即可;(3)与(1)类似,根据旋转变换的性质、勾股定理和余弦、正弦的关系计算即可试题解析:【详解】解:(1)ABPACP,APAP,由旋转变换的性质可知,PAP60,PCPB,PAP为等边三角形,APP60,PACPCA60 30,APC150,PPC90,PP1PC1PC1,PA1PC1PB1,故答案为150,PA1PC1PB1;(1)如图,作,使,连接,过点A作AD于D点,即,ABAC,. , AD,.在Rt中,.,.在Rt中,.;(3)如图1,与(1)的方法类似,作将ABP绕点A逆时针旋转得到ACP,连接PP,作ADPP于D,由旋转变换的性质可知,PAP,PCPB,APP90,PACPCA,APC180,PPC(180)(90)90,PP1PC1PC1,APP90,PDPAcos(90)PAsin,PP1PAsin,4PA1sin1PC1PB1,故答案为4PA1sin1PC1PB1【点睛】本题考查的是旋转变换的性质、等边三角形的性质、勾股定理的应用,掌握等边三角形的性质、旋转变换的性质、灵活运用类比思想是解题的关键