宁夏中卫市海原县第一中学2022-2023学年高考数学考前最后一卷预测卷含解析.doc

上传人:lil****205 文档编号:87997059 上传时间:2023-04-19 格式:DOC 页数:17 大小:1.75MB
返回 下载 相关 举报
宁夏中卫市海原县第一中学2022-2023学年高考数学考前最后一卷预测卷含解析.doc_第1页
第1页 / 共17页
宁夏中卫市海原县第一中学2022-2023学年高考数学考前最后一卷预测卷含解析.doc_第2页
第2页 / 共17页
点击查看更多>>
资源描述

《宁夏中卫市海原县第一中学2022-2023学年高考数学考前最后一卷预测卷含解析.doc》由会员分享,可在线阅读,更多相关《宁夏中卫市海原县第一中学2022-2023学年高考数学考前最后一卷预测卷含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回

2、。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设函数定义域为全体实数,令有以下6个论断:是奇函数时,是奇函数;是偶函数时,是奇函数;是偶函数时,是偶函数;是奇函数时,是偶函数是偶函数;对任意的实数,那么正确论断的编号是( )ABCD2已知复数z(1+2i)(1+ai)(aR),若zR,则实数a( )ABC2D23已知数列的前项和为,且,则的通项公式( )ABCD4如图所示,网格纸上小正方形的边长为,粗线画出的是某多面体的三视图,则该几何体的各个面中最大面的面积为( )ABCD5已知集合,则ABCD6若复数z满足,则复数z在复平面内对应

3、的点在( )A第一象限B第二象限C第三象限D第四象限7如图示,三棱锥的底面是等腰直角三角形,且,则与面所成角的正弦值等于( )ABCD8设,其中a,b是实数,则( )A1B2CD9在平面直角坐标系中,经过点,渐近线方程为的双曲线的标准方程为( )ABCD10是恒成立的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件11已知等差数列的公差不为零,且,构成新的等差数列,为的前项和,若存在使得,则( )A10B11C12D1312如下的程序框图的算法思路源于我国古代数学名著九章算术中的“更相减损术”执行该程序框图,若输入的a,b分别为176,320,则输出的a为( )A16B1

4、8C20D15二、填空题:本题共4小题,每小题5分,共20分。13一个袋中装着标有数字1,2,3,4,5的小球各2个,从中任意摸取3个小球,每个小球被取出的可能性相等,则取出的3个小球中数字最大的为4的概率是_14已知向量,若向量与向量平行,则实数_15某校高二(4)班统计全班同学中午在食堂用餐时间,有7人用时为6分钟,有14人用时7分钟,有15人用时为8分钟,还有4人用时为10分钟,则高二(4)班全体同学用餐平均用时为_分钟.16若函数为奇函数,则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知在平面直角坐标系中,曲线的参数方程为(为参数.).以坐标原点为

5、极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为,曲线与直线其中的一个交点为,且点极径.极角(1)求曲线的极坐标方程与点的极坐标;(2)已知直线的直角坐标方程为,直线与曲线相交于点(异于原点),求的面积.18(12分)如图,三棱柱中,与均为等腰直角三角形,侧面是菱形.(1)证明:平面平面;(2)求二面角的余弦值.19(12分)在全面抗击新冠肺炎疫情这一特殊时期,我市教育局提出“停课不停学”的口号,鼓励学生线上学习.某校数学教师为了调查高三学生数学成绩与线上学习时间之间的相关关系,对高三年级随机选取45名学生进行跟踪问卷,其中每周线上学习数学时间不少于5小时的有19人,余下的人中,在检测考试

6、中数学平均成绩不足120分的占,统计成绩后得到如下列联表:分数不少于120分分数不足120分合计线上学习时间不少于5小时419线上学习时间不足5小时合计45(1)请完成上面列联表;并判断是否有99%的把握认为“高三学生的数学成绩与学生线上学习时间有关”;(2)按照分层抽样的方法,在上述样本中从分数不少于120分和分数不足120分的两组学生中抽取9名学生,设抽到不足120分且每周线上学习时间不足5小时的人数是,求的分布列(概率用组合数算式表示);若将频率视为概率,从全校高三该次检测数学成绩不少于120分的学生中随机抽取20人,求这些人中每周线上学习时间不少于5小时的人数的期望和方差.(下面的临界

7、值表供参考)0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828(参考公式其中)20(12分)设函数.(1)若恒成立,求整数的最大值;(2)求证:.21(12分)在平面直角坐标系中,直线的参数方程为(为参数)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为(1)求直线的普通方程与曲线的直角坐标方程;(2)若射线与和分别交于点,求22(10分)为贯彻十九大报告中“要提供更多优质生态产品以满足人民日益增长的优美生态环境需要”的要求,某生物小组通过抽样检测植物高度的方法来监测培育的某种植物的生长情况现分别从、三块试验

8、田中各随机抽取株植物测量高度,数据如下表(单位:厘米): 组组组假设所有植株的生长情况相互独立从、三组各随机选株,组选出的植株记为甲,组选出的植株记为乙,组选出的植株记为丙(1)求丙的高度小于厘米的概率;(2)求甲的高度大于乙的高度的概率;(3)表格中所有数据的平均数记为从、三块试验田中分别再随机抽取株该种植物,它们的高度依次是、(单位:厘米)这个新数据与表格中的所有数据构成的新样本的平均数记为,试比较和的大小(结论不要求证明)参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据函数奇偶性的定义即可判断函数的奇偶性并证

9、明.【详解】当是偶函数,则,所以,所以是偶函数;当是奇函数时,则,所以,所以是偶函数;当为非奇非偶函数时,例如:,则,此时,故错误;故正确.故选:A【点睛】本题考查了函数的奇偶性定义,掌握奇偶性定义是解题的关键,属于基础题.2、D【解析】化简z(1+2i)(1+ai)=,再根据zR求解.【详解】因为z(1+2i)(1+ai)=,又因为zR,所以,解得a-2.故选:D【点睛】本题主要考查复数的运算及概念,还考查了运算求解的能力,属于基础题.3、C【解析】利用证得数列为常数列,并由此求得的通项公式.【详解】由,得,可得().相减得,则(),又由,得,所以,所以为常数列,所以,故.故选:C【点睛】本

10、小题考查数列的通项与前项和的关系等基础知识;考查运算求解能力,逻辑推理能力,应用意识.4、B【解析】根据三视图可以得到原几何体为三棱锥,且是有三条棱互相垂直的三棱锥,根据几何体的各面面积可得最大面的面积【详解】解:分析题意可知,如下图所示,该几何体为一个正方体中的三棱锥,最大面的表面边长为的等边三角形,故其面积为,故选B【点睛】本题考查了几何体的三视图问题,解题的关键是要能由三视图解析出原几何体,从而解决问题5、D【解析】因为,所以,故选D6、A【解析】化简复数,求得,得到复数在复平面对应点的坐标,即可求解.【详解】由题意,复数z满足,可得,所以复数在复平面内对应点的坐标为位于第一象限故选:A

11、.【点睛】本题主要考查了复数的运算,以及复数的几何表示方法,其中解答中熟记复数的运算法则,结合复数的表示方法求解是解答的关键,着重考查了推理与计算能力,属于基础题.7、A【解析】首先找出与面所成角,根据所成角所在三角形利用余弦定理求出所成角的余弦值,再根据同角三角函数关系求出所成角的正弦值.【详解】由题知是等腰直角三角形且,是等边三角形,设中点为,连接,可知,同时易知,所以面,故即为与面所成角,有,故.故选:A.【点睛】本题主要考查了空间几何题中线面夹角的计算,属于基础题.8、D【解析】根据复数相等,可得,然后根据复数模的计算,可得结果.【详解】由题可知:,即,所以则故选:D【点睛】本题考查复

12、数模的计算,考验计算,属基础题.9、B【解析】根据所求双曲线的渐近线方程为,可设所求双曲线的标准方程为k再把点代入,求得 k的值,可得要求的双曲线的方程【详解】双曲线的渐近线方程为设所求双曲线的标准方程为k又在双曲线上,则k=16-2=14,即双曲线的方程为双曲线的标准方程为故选:B【点睛】本题主要考查用待定系数法求双曲线的方程,双曲线的定义和标准方程,以及双曲线的简单性质的应用,属于基础题10、A【解析】设 成立;反之,满足 ,但,故选A.11、D【解析】利用等差数列的通项公式可得,再利用等差数列的前项和公式即可求解.【详解】由,构成等差数列可得即又解得:又所以时,.故选:D【点睛】本题考查

13、了等差数列的通项公式、等差数列的前项和公式,需熟记公式,属于基础题.12、A【解析】根据题意可知最后计算的结果为的最大公约数.【详解】输入的a,b分别为,根据流程图可知最后计算的结果为的最大公约数,按流程图计算,易得176和320的最大公约数为16,故选:A.【点睛】本题考查的是利用更相减损术求两个数的最大公约数,难度较易.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由题,得满足题目要求的情况有,有一个数字4,另外两个数字从1,2,3里面选和有两个数字4,另外一个数字从1,2,3里面选,由此即可得到本题答案.【详解】满足题目要求的情况可以分成2大类:有一个数字4,另外两个数字

14、从1,2,3里面选,一共有种情况;有两个数字4,另外一个数字从1,2,3里面选,一共有种情况,又从中任意摸取3个小球,有种情况,所以取出的3个小球中数字最大的为4的概率.故答案为:【点睛】本题主要考查古典概型与组合的综合问题,考查学生分析问题和解决问题的能力.14、【解析】由题可得,因为向量与向量平行,所以,解得15、7.5【解析】分别求出所有人用时总和再除以总人数即可得到平均数.【详解】故答案为:7.5【点睛】此题考查求平均数,关键在于准确计算出所有数据之和,易错点在于概念辨析不清导致计算出错.16、-2【解析】由是定义在上的奇函数,可知对任意的,都成立,代入函数式可求得的值.【详解】由题意

15、,的定义域为,是奇函数,则,即对任意的,都成立,故,整理得,解得.故答案为:.【点睛】本题考查奇函数性质的应用,考查学生的计算求解能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)极坐标方程为,点的极坐标为(2)【解析】(1)利用极坐标方程、普通方程、参数方程间的互化公式即可;(2)只需算出A、B两点的极坐标,利用计算即可.【详解】(1)曲线C:(为参数,),将代入,解得,即曲线的极坐标方程为,点的极坐标为.(2)由(1),得点的极坐标为,由直线过原点且倾斜角为,知点的极坐标为,.【点睛】本题考查极坐标方程、普通方程、参数方程间的互化以及利用极径求三角

16、形面积,考查学生的运算能力,是一道基础题.18、(1)见解析(2)【解析】(1)取中点,连接,通过证明,得,结合可证线面垂直,继而可证面面垂直.(2)设,建立空间直角坐标系,求出平面和平面的法向量,继而可求二面角的余弦值.【详解】解析:(1)取中点,连接,由已知可得,侧面是菱形,即,平面,平面平面.(2)设,则,建立如图所示空间直角坐标系,则,设平面的法向量为,则,令得.同理可求得平面的法向量,.【点睛】本题考查了面面垂直的判定,考查了二面角的求解.一般在求二面角或者线面角的问题时,常建立空间直角坐标系,通过求面的法向量、线的方向向量,继而求解.特别地,对于线面角问题,法向量与方向向量的余角才

17、是所求的线面角,即两个向量夹角的余弦值为线面角的正弦值.19、(1)填表见解析;有99%的把握认为“高三学生的数学成绩与学生线上学习时间有关”(2)详见解析期望;方差【解析】(1)完成列联表,代入数据即可判断;(2)利用分层抽样可得的取值,进而得到概率,列出分布列;根据分析知,计算出期望与方差.【详解】(1)分数不少于120分分数不足120分合计线上学习时间不少于5小时15419线上学习时间不足5小时101626合计252045有99%的把握认为“高三学生的数学成绩与学生线上学习时间有关”.(2)由分层抽样知,需要从不足120分的学生中抽取人,的可能取值为0,1,2,3,4,所以,的分布列:从

18、全校不少于120分的学生中随机抽取1人,此人每周上线时间不少于5小时的概率为,设从全校不少于120分的学生中随机抽取20人,这些人中每周线上学习时间不少于5小时的人数为,则,故,.【点睛】本题考查了独立性检验与离散型随机变量的分布列、数学期望与方差的计算问题,属于基础题.20、(1)整数的最大值为;(2)见解析.【解析】(1)将不等式变形为,构造函数,利用导数研究函数的单调性并确定其最值,从而得到正整数的最大值;(2)根据(1)的结论得到,利用不等式的基本性质可证得结论.【详解】(1)由得,令,令,对恒成立,所以,函数在上单调递增,故存在使得,即,从而当时,有,所以,函数在上单调递增;当时,有

19、,所以,函数在上单调递减.所以,因此,整数的最大值为;(2)由(1)知恒成立,令则,上述等式全部相加得,所以,因此,【点睛】本题考查导数在函数单调性、最值中的应用,以及放缩法证明不等式的技巧,属于难题21、(1): ;: (2) 【解析】(1)由可得,由,消去参数,可得直线的普通方程为 由可得,将,代入上式,可得,所以曲线的直角坐标方程为(2)由(1)得,的普通方程为,将其化为极坐标方程可得,当时,所以22、(1);(2);(3)【解析】设事件为“甲是组的第株植物”,事件为“乙是组的第株植物”,事件为“丙是组的第株植物”,、,可得出.(1)设事件为“丙的高度小于厘米”,可得,且、互斥,利用互斥事件的概率公式可求得结果;(2)设事件为“甲的高度大于乙的高度”,列举出符合题意的基本事件,利用互斥事件的概率加法公式可求得所求事件的概率;(3)根据题意直接判断和的大小即可.【详解】设事件为“甲是组的第株植物”,事件为“乙是组的第株植物”,事件为“丙是组的第株植物”,、由题意可知,、(1)设事件为“丙的高度小于厘米”,由题意知,又与互斥,所以事件的概率;(2)设事件为“甲的高度大于乙的高度”由题意知所以事件的概率;(3).【点睛】本题考查概率的求法,考查互斥事件加法公式、相互独立事件概率乘法公式等基础知识,考查运算求解能力,是中等题

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁