《四川省巴中市恩阳区市级名校2022-2023学年中考数学模拟预测题含解析.doc》由会员分享,可在线阅读,更多相关《四川省巴中市恩阳区市级名校2022-2023学年中考数学模拟预测题含解析.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1下列各点中,在二次函数的图象上的是( )ABCD2如图,BD为O的直径,点A为弧BDC的中点,ABD35,则DBC()A20B35C15D453如图所示,二次函数y=ax2+bx+c(a0)的图象经过点(1,2),且与x轴交点的横坐
2、标分别为x1、x2,其中2x11,0x21下列结论:4a2b+c0;2ab0;abc0;b2+8a4ac其中正确的结论有()A1个B2个C3个D4个4对于命题“如果1+190,那么11”能说明它是假命题的是()A150,140B140,150C130,160D11455如图,长度为10m的木条,从两边各截取长度为xm的木条,若得到的三根木条能组成三角形,则x可以取的值为()A2mB mC3mD6m6 “单词的记忆效率”是指复习一定量的单词,一周后能正确默写出的单词个数与复习的单词个数的比值.右图描述了某次单词复习中四位同学的单词记忆效率与复习的单词个数的情况,则这四位同学在这次单词复习中正确默
3、写出的单词个数最多的是( )ABCD7已知xa=2,xb=3,则x3a2b等于()AB1C17D728中国古代在利用“计里画方”(比例缩放和直角坐标网格体系)的方法制作地图时,会利用测杆、水准仪和照板来测量距离在如图所示的测量距离AB的示意图中,记照板“内芯”的高度为EF,观测者的眼睛(图中用点C表示)与BF在同一水平线上,则下列结论中,正确的是()ABCD9如果一组数据6,7,x,9,5的平均数是2x,那么这组数据的中位数为( )A5B6C7D910将二次函数yx2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是( )Ay(x1)22By(x1)22Cy(x1)22Dy(
4、x1)22二、填空题(共7小题,每小题3分,满分21分)11若y=,则x+y= 12若圆锥的地面半径为,侧面积为,则圆锥的母线是_13已知函数,当 时,函数值y随x的增大而增大14如图,小明在A时测得某树的影长为3米,B时又测得该树的影长为12米,若两次日照的光线互相垂直,则树的高度为_米.15如图,为了测量铁塔AB高度,在离铁塔底部(点B)60米的C处,测得塔顶A的仰角为30,那么铁塔的高度AB=_米16如果a2a10,那么代数式(a)的值是 17若一个多边形的内角和为1080,则这个多边形的边数为_三、解答题(共7小题,满分69分)18(10分)如图,在中,的垂直平分线交于,交于,射线上,
5、并且()求证:;()当的大小满足什么条件时,四边形是菱形?请回答并证明你的结论19(5分)某校为选拔一名选手参加“美丽邵阳,我为家乡做代言”主题演讲比赛,经研究,按图所示的项目和权数对选拔赛参赛选手进行考评(因排版原因统计图不完整)下表是李明、张华在选拔赛中的得分情况:项目选手服装普通话主题演讲技巧李明85708085张华90757580结合以上信息,回答下列问题:求服装项目的权数及普通话项目对应扇形的圆心角大小;求李明在选拔赛中四个项目所得分数的众数和中位数;根据你所学的知识,帮助学校在李明、张华两人中选择一人参加“美丽邵阳,我为家乡做代言”主题演讲比赛,并说明理由20(8分)如图,直线y=
6、x+3分别与x轴、y交于点B、C;抛物线y=x2+bx+c经过点B、C,与x轴的另一个交点为点A(点A在点B的左侧),对称轴为l1,顶点为D(1)求抛物线y=x2+bx+c的解析式(2)点M(1,m)为y轴上一动点,过点M作直线l2平行于x轴,与抛物线交于点P(x1,y1),Q(x2,y2),与直线BC交于点N(x3,y3),且x2x11结合函数的图象,求x3的取值范围;若三个点P、Q、N中恰好有一点是其他两点所连线段的中点,求m的值21(10分)某市正在举行文化艺术节活动,一商店抓住商机,决定购进甲,乙两种艺术节纪念品若购进甲种纪念品4件,乙种纪念品3件,需要550元,若购进甲种纪念品5件,
7、乙种纪念品6件,需要800元(1)求购进甲、乙两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共80件,其中甲种纪念品的数量不少于60件考虑到资金周转,用于购买这80件纪念品的资金不能超过7100元,那么该商店共有几种进货方案7(3)若销售每件甲种纪含晶可获利润20元,每件乙种纪念品可获利润30元在(2)中的各种进货方案中,若全部销售完,哪一种方案获利最大?最大利利润多少元?22(10分)如图,为了测量山顶铁塔AE的高,小明在27m高的楼CD底部D测得塔顶A的仰角为45,在楼顶C测得塔顶A的仰角3652已知山高BE为56m,楼的底部D与山脚在同一水平线上,求该铁塔的高AE(参考数据
8、:sin36520.60,tan36520.75)23(12分)化简求值:,其中24(14分)已知:在ABC中,AC=BC,D,E,F分别是AB,AC,CB的中点.求证:四边形DECF是菱形.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】将各选项的点逐一代入即可判断【详解】解:当x=1时,y=-1,故点不在二次函数的图象;当x=2时,y=-4,故点和点不在二次函数的图象;当x=-2时,y=-4,故点在二次函数的图象;故答案为:D【点睛】本题考查了判断一个点是否在二次函数图象上,解题的关键是将点代入函数解析式2、A【解析】根据ABD35就可以求出的度数,再根据
9、,可以求出 ,因此就可以求得的度数,从而求得DBC【详解】解:ABD35,的度数都是70,BD为直径,的度数是18070110,点A为弧BDC的中点,的度数也是110,的度数是110+11018040,DBC20,故选:A【点睛】本题考查了等腰三角形性质、圆周角定理,主要考查学生的推理能力3、C【解析】首先根据抛物线的开口方向可得到a0,抛物线交y轴于正半轴,则c0,而抛物线与x轴的交点中,2x11、0x21说明抛物线的对称轴在10之间,即x=1,可根据这些条件以及函数图象上一些特殊点的坐标来进行判断【详解】由图知:抛物线的开口向下,则a0;抛物线的对称轴x=1,且c0; 由图可得:当x=2时
10、,y0,即4a2b+c0,故正确; 已知x=1,且a0,所以2ab0,故正确; 抛物线对称轴位于y轴的左侧,则a、b同号,又c0,故abc0,所以不正确; 由于抛物线的对称轴大于1,所以抛物线的顶点纵坐标应该大于2,即:2,由于a0,所以4acb28a,即b2+8a4ac,故正确; 因此正确的结论是 故选:C【点睛】本题主要考查对二次函数图象与系数的关系,抛物线与x轴的交点,二次函数图象上点的坐标特征等知识点的理解和掌握,能根据图象确定与系数有关的式子的正负是解此题的关键4、D【解析】能说明是假命题的反例就是能满足已知条件,但不满足结论的例子【详解】“如果1+190,那么11”能说明它是假命题
11、为1145故选:D【点睛】考查了命题与定理的知识,理解能说明它是假命题的反例的含义是解决本题的关键5、C【解析】依据题意,三根木条的长度分别为x m,x m,(10-2x) m,在根据三角形的三边关系即可判断.【详解】解:由题意可知,三根木条的长度分别为x m,x m,(10-2x) m,三根木条要组成三角形,x-x10-2xx+x,解得:.故选择C.【点睛】本题主要考察了三角形三边的关系,关键是掌握三角形两边之和大于第三边,两边之差的绝对值小于第三边.6、C【解析】分析:在四位同学中,M同学单词记忆效率最高,但是复习的单词最少,T同学复习的单词最多,但是他的单词记忆效率最低,N,S两位同学的
12、单词记忆效率基本相同,但是S同学复习的单词最多,这四位同学在这次单词复习中正确默写出的单词个数最多的应该是S.详解:在四位同学中,M同学单词记忆效率最高,但是复习的单词最少,T同学复习的单词最多,但是他的单词记忆效率最低,N,S两位同学的单词记忆效率基本相同,但是S同学复习的单词最多,这四位同学在这次单词复习中正确默写出的单词个数最多的应该是S.故选C.点睛:考查函数的图象,正确理解题目的意思是解题的关键.7、A【解析】xa=2,xb=3,x3a2b=(xa)3(xb)2=89= ,故选A.8、B【解析】分析:由平行得出相似,由相似得出比例,即可作出判断.详解: EFAB, CEFCAB, ,
13、故选B.点睛:本题考查了相似三角形的应用,熟练掌握相似三角形的判定与性质是解答本题的关键.9、B【解析】直接利用平均数的求法进而得出x的值,再利用中位数的定义求出答案【详解】一组数据1,7,x,9,5的平均数是2x,解得:,则从大到小排列为:3,5,1,7,9,故这组数据的中位数为:1故选B【点睛】此题主要考查了中位数以及平均数,正确得出x的值是解题关键10、A【解析】试题分析:根据函数图象右移减、左移加,上移加、下移减,可得答案解:将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是 y=(x1)2+2,故选A考点:二次函数图象与几何变换二、填空题(共7小题
14、,每小题3分,满分21分)11、1.【解析】试题解析:原二次根式有意义,x-30,3-x0,x=3,y=4,x+y=1考点:二次根式有意义的条件12、13【解析】试题解析:圆锥的侧面积=底面半径母线长,把相应数值代入即可求解设母线长为R,则: 解得: 故答案为13.13、x1【解析】试题分析:=,a=10,抛物线开口向下,对称轴为直线x=1,当x1时,y随x的增大而增大,故答案为x1考点:二次函数的性质14、1【解析】根据题意,画出示意图,易得:RtEDCRtFDC,进而可得;即DC2=ED?FD,代入数据可得答案【详解】根据题意,作EFC,树高为CD,且ECF=90,ED=3,FD=12,易
15、得:RtEDCRtDCF,有,即DC2=EDFD,代入数据可得DC2=31,DC=1,故答案为115、20【解析】在RtABC中,直接利用tanACB=tan30=即可.【详解】在RtABC中,tanACB=tan30=,BC=60,解得AB=20.故答案为20.【点睛】本题考查的知识点是解三角形的实际应用,解题的关键是熟练的掌握解三角形的实际应用.16、1【解析】分析:先由a2a1=0可得a2a=1,再把(a )的第一个括号内通分,并把分子分解因式后约分化简,然后把a2a=1代入即可.详解:a2a1=0,即a2a=1,原式= = =a(a1)=a2a=1,故答案为1点睛:本题考查了分式的化简
16、求值,解题的关键是正确掌握分式混合运算的顺序:先算乘除,后算加减,有括号的先算括号里,整体代入法是求代数式的值常用的一种方法.17、1【解析】根据多边形内角和定理:(n2)110 (n3)可得方程110(x2)1010,再解方程即可【详解】解:设多边形边数有x条,由题意得:110(x2)1010,解得:x1,故答案为:1【点睛】此题主要考查了多边形内角和定理,关键是熟练掌握计算公式:(n2)110 (n3)三、解答题(共7小题,满分69分)18、(1)见解析;(2)见解析【解析】(1)求出EFAC,根据EFAC,利用平行四边形的判定推出四边形ACEF是平行四边形即可;(2)求出CEAB,ACA
17、B,推出 AC CE,根据菱形的判定推出即可.【详解】(1)证明:ACB90,DE是BC的垂直平分线,BDEACB90,EFAC,EFAC,四边形ACEF是平行四边形,AFCE;(2)当B30时,四边形ACEF是菱形,证明:B30,ACB90,ACAB,DE是BC的垂直平分线,BDDC,DEAC,BEAE,ACB90,CEAB,CEAC,四边形ACEF是平行四边形,四边形ACEF是菱形,即当B30时,四边形ACEF是菱形.【点睛】本题考查了菱形的判定平行四边形的判定线段垂直平分线,含30度角的直角三角形性质,直角三角形斜边上中线性质等知识点的应用综合性比较强,有一定的难度.19、(1)服装项目
18、的权数是10%,普通话项目对应扇形的圆心角是72;(2)众数是85,中位数是82.5;(3)选择李明参加“美丽邵阳,我为家乡做代言”主题演讲比赛,理由见解析.【解析】(1)根据扇形图用1减去其它项目的权重可求得服装项目的权重,用360度乘以普通话项目的权重即可求得普通话项目对应扇形的圆心角大小;(2)根据统计表中的数据可以求得李明在选拔赛中四个项目所得分数的众数和中位数;(3)根据统计图和统计表中的数据可以分别计算出李明和张华的成绩,然后比较大小,即可解答本题【详解】(1)服装项目的权数是:120%30%40%=10%,普通话项目对应扇形的圆心角是:36020%=72;(2)明在选拔赛中四个项
19、目所得分数的众数是85,中位数是:(80+85)2=82.5;(3)李明得分为:8510%+7020%+8030%+8540%=80.5,张华得分为:9010%+7520%+7530%+8040%=78.5,80.578.5,李明的演讲成绩好,故选择李明参加“美丽邵阳,我为家乡做代言”主题演讲比赛【点睛】本题考查了扇形统计图、中位数、众数、加权平均数,明确题意,结合统计表和统计图找出所求问题需要的条件,运用数形结合的思想进行解答是解题的关键20、(2)y=x24x+3;(2)2x34,m的值为或2【解析】(2)由直线y=x+3分别与x轴、y交于点B、C求得点B、C的坐标,再代入y=x2+bx+
20、c求得b、c的值,即可求得抛物线的解析式;(2)先求得抛物线的顶点坐标为D(2,2),当直线l2经过点D时求得m=2;当直线l2经过点C时求得m=3,再由x2x22,可得2y33,即可2x3+33,所以2x34;分当直线l2在x轴的下方时,点Q在点P、N之间和当直线l2在x轴的上方时,点N在点P、Q之间两种情况求m的值即可.【详解】(2)在y=x+3中,令x=2,则y=3;令y=2,则x=3;得B(3,2),C(2,3),将点B(3,2),C(2,3)的坐标代入y=x2+bx+c得:,解得 y=x24x+3;(2)直线l2平行于x轴,y2=y2=y3=m,如图,y=x24x+3=(x2)22,
21、顶点为D(2,2),当直线l2经过点D时,m=2;当直线l2经过点C时,m=3x2x22,2y33,即2x3+33,得2x34,如图,当直线l2在x轴的下方时,点Q在点P、N之间,若三个点P、Q、N中恰好有一点是其他两点所连线段的中点,则得PQ=QNx2x22,x3x2=x2x2,即 x3=2x2x2,l2x轴,即PQx轴,点P、Q关于抛物线的对称轴l2对称,又抛物线的对称轴l2为x=2,2x2=x22,即x2=4x2,x3=3x24,将点Q(x2,y2)的坐标代入y=x24x+3得y2=x224x2+3,又y2=y3=x3+3x224x2+3=x3+3,x224x2=(3x24)即 x22x
22、24=2,解得x2=,(负值已舍去),m=()24+3=如图,当直线l2在x轴的上方时,点N在点P、Q之间,若三个点P、Q、N中恰好有一点是其他两点所连线段的中点,则得PN=NQ由上可得点P、Q关于直线l2对称,点N在抛物线的对称轴l2:x=2,又点N在直线y=x+3上,y3=2+3=2,即m=2故m的值为或2【点睛】本题是二次函数综合题,本题为二次函数的综合应用,涉及待定系数法、函数图象的交点、线段的中点及分类讨论思想等知识在(2)中注意待定系数法的应用;在(2)注意利用数形结合思想;在(2)注意分情况讨论本题考查知识点较多,综合性较强,难度较大21、(1)购进甲种纪念品每件需100元,购进
23、乙种纪念品每件需50元(2)有三种进货方案方案一:甲种纪念品60件,乙种纪念品20件;方案二:甲种纪念品61件,乙种纪念品19件;方案三:甲种纪念品1件,乙种纪念品18件(3)若全部销售完,方案一获利最大,最大利润是1800元【解析】分析:(1)设购进甲种纪念品每件价格为x元,乙种纪念币每件价格为y元,根据题意得出关于x和y的二元一次方程组,解方程组即可得出结论;(2)设购进甲种纪念品a件,根据题意列出关于x的一元一次不等式,解不等式得出a的取值范围,即可得出结论;(3)找出总利润关于购买甲种纪念品a件的函数关系式,由函数的增减性确定总利润取最值时a的值,从而得出结论详解:(1)设购进甲种纪念
24、品每件需x元,购进乙种纪念品每件需y元由题意得:,解得:答:购进甲种纪念品每件需100元,购进乙种纪念品每件需50元(2)设购进甲种纪念品a(a60)件,则购进乙种纪念品(80a)件由题意得:100a+50(80a)7100解得a1又a60所以a可取60、61、1即有三种进货方案方案一:甲种纪念品60件,乙种纪念品20件;方案二:甲种纪念品61件,乙种纪念品19件;方案三:甲种纪念品1件,乙种纪念品18件(3)设利润为W,则W=20a+30(80a)=10a+2400所以W是a的一次函数,100,W随a的增大而减小所以当a最小时,W最大此时W=1060+2400=1800答:若全部销售完,方案
25、一获利最大,最大利润是1800元点睛:本题考查了二元一次方程组的应用,一元一次不等式的应用,一次函数的应用,找到相应的数量关系是解决问题的关键,注意第二问应求整数解,要求学生能够运用所学知识解决实际问题.22、52【解析】根据楼高和山高可求出EF,继而得出AF,在RtAFC中表示出CF,在RtABD中表示出BD,根据CF=BD可建立方程,解出即可【详解】如图,过点C作CFAB于点F. 设塔高AE=x,由题意得,EF=BECD=5627=29m,AF=AE+EF=(x+29)m,在RtAFC中,ACF=3652,AF=(x+29)m,则,在RtABD中,ADB=45,AB=x+56,则BD=AB=x+56,CF=BD,解得:x=52,答:该铁塔的高AE为52米.【点睛】本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,注意利用方程思想求解,难度一般.23、 【解析】分析:先把小括号内的通分,按照分式的减法和分式除法法则进行化简,再把字母的值代入运算即可.详解:原式 当时,点睛:考查分式的混合运算,掌握运算顺序是解题的关键.24、见解析【解析】证明:D、E是AB、AC的中点DE=BC,EC=AC D、F是AB、BC的中点DF=AC,FC=BCDE=FC=BC,EC=DF=ACAC=BCDE=EC=FC=DF四边形DECF是菱形