《天津市蓟州等部分区2022-2023学年高考冲刺押题(最后一卷)数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《天津市蓟州等部分区2022-2023学年高考冲刺押题(最后一卷)数学试卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1如图,正方形网格纸中的实线图形是一个多面体的三视图,则该多面体各表面所在平面互相垂直的有( )A2对B3对C4对D5对2已知复数为虚数单位) ,则z 的虚部为( )A2BC4D3已知分别为圆与的直径,则的取值范围为( )ABCD4一个盒子里有4个分别
2、标有号码为1,2,3,4的小球,每次取出一个,记下它的标号后再放回盒子中,共取3次,则取得小球标号最大值是4的取法有( )A17种B27种C37种D47种5若满足,且目标函数的最大值为2,则的最小值为( )A8B4CD66中心在原点,对称轴为坐标轴的双曲线的两条渐近线与圆都相切,则双曲线的离心率是( )A2或B2或C或D或7是恒成立的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件8正项等比数列中的、是函数的极值点,则( )AB1CD29若集合,则=( )ABCD10若复数(为虚数单位),则( )ABCD11设为虚数单位,为复数,若为实数,则( )ABCD12等差数列的前
3、项和为,若,则数列的公差为( )A-2B2C4D7二、填空题:本题共4小题,每小题5分,共20分。13设第一象限内的点(x,y)满足约束条件,若目标函数zaxby(a0,b0)的最大值为40,则的最小值为_.14已知双曲线的一条渐近线为,且经过抛物线的焦点,则双曲线的标准方程为_.15已知实数,对任意,有,且,则_.16已知、为正实数,直线截圆所得的弦长为,则的最小值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)设函数,(1)当,求不等式的解集;(2)已知,的最小值为1,求证:.18(12分)如图在四边形中,为中点,.(1)求;(2)若,求面积的最大值.19
4、(12分)已知函数.(1)若恒成立,求的取值范围;(2)设函数的极值点为,当变化时,点构成曲线,证明:过原点的任意直线与曲线有且仅有一个公共点.20(12分)在平面直角坐标系中,曲线的参数方程是(为参数),以原点为极点,轴正半轴为极轴,建立极坐标系,直线的极坐标方程为.()求曲线的普通方程与直线的直角坐标方程;()已知直线与曲线交于,两点,与轴交于点,求.21(12分)已知函数.(1)若函数,求的极值;(2)证明:. (参考数据: )22(10分)已知不等式的解集为.(1)求实数的值;(2)已知存在实数使得恒成立,求实数的最大值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小
5、题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】画出该几何体的直观图,易证平面平面,平面平面,平面平面,平面平面,从而可选出答案【详解】该几何体是一个四棱锥,直观图如下图所示,易知平面平面,作POAD于O,则有PO平面ABCD,POCD,又ADCD,所以,CD平面PAD,所以平面平面,同理可证:平面平面,由三视图可知:POAOOD,所以,APPD,又APCD,所以,AP平面PCD,所以,平面平面,所以该多面体各表面所在平面互相垂直的有4对【点睛】本题考查了空间几何体的三视图,考查了四棱锥的结构特征,考查了面面垂直的证明,属于中档题2、A【解析】对复数进行乘法运算,并计算得到,从而得
6、到虚部为2.【详解】因为,所以z 的虚部为2.【点睛】本题考查复数的四则运算及虚部的概念,计算过程要注意.3、A【解析】由题先画出基本图形,结合向量加法和点乘运算化简可得,结合的范围即可求解【详解】如图,其中,所以.故选:A【点睛】本题考查向量的线性运算在几何中的应用,数形结合思想,属于中档题4、C【解析】由于是放回抽取,故每次的情况有4种,共有64种;先找到最大值不是4的情况,即三次取出标号均不为4的球的情况,进而求解.【详解】所有可能的情况有种,其中最大值不是4的情况有种,所以取得小球标号最大值是4的取法有种,故选:C【点睛】本题考查古典概型,考查补集思想的应用,属于基础题.5、A【解析】
7、作出可行域,由,可得.当直线过可行域内的点时,最大,可得.再由基本不等式可求的最小值.【详解】作出可行域,如图所示由,可得.平移直线,当直线过可行域内的点时,最大,即最大,最大值为2.解方程组,得.,当且仅当,即时,等号成立.的最小值为8.故选:.【点睛】本题考查简单的线性规划,考查基本不等式,属于中档题.6、A【解析】根据题意,由圆的切线求得双曲线的渐近线的方程,再分焦点在x、y轴上两种情况讨论,进而求得双曲线的离心率【详解】设双曲线C的渐近线方程为y=kx,是圆的切线得: ,得双曲线的一条渐近线的方程为 焦点在x、y轴上两种情况讨论:当焦点在x轴上时有: 当焦点在y轴上时有: 求得双曲线的
8、离心率 2或故选:A【点睛】本小题主要考查直线与圆的位置关系、双曲线的简单性质等基础知识,考查运算求解能力,考查数形结合思想解题的关键是:由圆的切线求得直线 的方程,再由双曲线中渐近线的方程的关系建立等式,从而解出双曲线的离心率的值此题易忽视两解得出错误答案7、A【解析】设 成立;反之,满足 ,但,故选A.8、B【解析】根据可导函数在极值点处的导数值为,得出,再由等比数列的性质可得.【详解】解:依题意、是函数的极值点,也就是的两个根又是正项等比数列,所以.故选:B【点睛】本题主要考查了等比数列下标和性质以应用,属于中档题.9、C【解析】试题分析:化简集合故选C考点:集合的运算10、B【解析】根
9、据复数的除法法则计算,由共轭复数的概念写出.【详解】,故选:B【点睛】本题主要考查了复数的除法计算,共轭复数的概念,属于容易题.11、B【解析】可设,将化简,得到,由复数为实数,可得,解方程即可求解【详解】设,则.由题意有,所以.故选:B【点睛】本题考查复数的模长、除法运算,由复数的类型求解对应参数,属于基础题12、B【解析】在等差数列中由等差数列公式与下标和的性质求得,再由等差数列通项公式求得公差.【详解】在等差数列的前项和为,则则故选:B【点睛】本题考查等差数列中求由已知关系求公差,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】不等式表示的平面区域阴影部分,当直
10、线ax+by=z(a0,b0)过直线xy+2=0与直线2xy6=0的交点(8,10)时,目标函数z=ax+by(a0,b0)取得最大40,即8a+10b=40,即4a+5b=20,而当且仅当时取等号,则的最小值为.14、【解析】设以直线为渐近线的双曲线的方程为,再由双曲线经过抛物线焦点,能求出双曲线方程【详解】解:设以直线为渐近线的双曲线的方程为,双曲线经过抛物线焦点,双曲线方程为,故答案为:【点睛】本题主要考查双曲线方程的求法,考查抛物线、双曲线简单性质的合理运用,属于中档题15、-1【解析】由二项式定理及展开式系数的求法得,又,所以,令得:,所以,得解【详解】由,且,则,又,所以,令得:,
11、所以,故答案为:【点睛】本题考查了二项式定理及展开式系数的求法,意在考查学生对这些知识的理解掌握水平16、【解析】先根据弦长,半径,弦心距之间的关系列式求得,代入整理得,利用基本不等式求得最值.【详解】解:圆的圆心为,则到直线的距离为,由直线截圆所得的弦长为可得,整理得,解得或(舍去),令,又,当且仅当时,等号成立,则.故答案为:.【点睛】本题考查直线和圆的位置关系,考核基本不等式求最值,关键是对目标式进行变形,变成能用基本不等式求最值的形式,也可用换元法进行变形,是中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)或;(2)证明见解析【解析】(1)将化简,分类
12、讨论即可;(2)由(1)得,展开后再利用基本不等式即可.【详解】(1)当时,所以或或解得或,因此不等式的解集的或(2)根据,当且仅当时,等式成立.【点睛】本题考查绝对值不等式的解法、利用基本不等式证明不等式问题,考查学生基本的计算能力,是一道基础题.18、(1)1;(2)【解析】(1),在和中分别运用余弦定理可表示出,运用算两次的思想即可求得,进而求出;(2)在中,根据余弦定理和基本不等式,可求得,再由三角形的面积公式以及正弦函数的有界性,求出的面积的最大值【详解】(1)由题设,则在和中由余弦定理得:,即解得,(2)在中由余弦定理得,即,所以面积的最大值为,此时.【点睛】本题主要考查余弦定理在
13、解三角形中的应用,以及三角形面积公式的应用,意在考查学生的数学运算能力,属于中档题19、(1);(2)证明见解析【解析】(1)由恒成立,可得恒成立,进而构造函数,求导可判断出的单调性,进而可求出的最小值,令即可;(2)由,可知存在唯一的,使得,则,进而可得,即曲线的方程为,进而只需证明对任意,方程有唯一解,然后构造函数,分、和三种情况,分别证明函数在上有唯一的零点,即可证明结论成立.【详解】(1)由题意,可知,由恒成立,可得恒成立.令,则.令,则,在上单调递增,又,时,;时,即时,;时,时,单调递减;时,单调递增,时,取最小值,.(2)证明:由,令,由,结合二次函数性质可知,存在唯一的,使得,
14、故存在唯一的极值点,则,曲线的方程为.故只需证明对任意,方程有唯一解.令,则,当时,恒成立,在上单调递增.,存在满足时,使得.又单调递增,所以为唯一解.当时,二次函数,满足,则恒成立,在上单调递增.,存在使得,又在上单调递增,为唯一解.当时,二次函数,满足,此时有两个不同的解,不妨设, 列表如下:00极大值极小值由表可知,当时,的极大值为.,.下面来证明,构造函数,则,当时,此时单调递增,时,故成立.,存在,使得.又在单调递增,为唯一解.所以,对任意,方程有唯一解,即过原点任意的直线与曲线有且仅有一个公共点.【点睛】本题考查利用导数研究函数单调性的应用,考查不等式恒成立问题,考查利用单调性研究
15、图象交点问题,考查学生的计算求解能力与推理论证能力,属于难题.20、(1)(x1)2y24,直线l的直角坐标方程为xy20;(2)3.【解析】(1)消参得到曲线的普通方程,利用极坐标和直角坐标方程的互化公式求得直线的直角坐标方程;(2)先得到直线的参数方程,将直线的参数方程代入到圆的方程,得到关于的一元二次方程,由根与系数的关系、参数的几何意义进行求解.【详解】(1)由曲线C的参数方程 (为参数) (为参数),两式平方相加,得曲线C的普通方程为(x1)2y24;由直线l的极坐标方程可得coscossinsincossin2,即直线l的直角坐标方程为xy20.(2)由题意可得P(2,0),则直线
16、l的参数方程为 (t为参数)设A,B两点对应的参数分别为t1,t2,则|PA|PB|t1|t2|,将 (t为参数)代入(x1)2y24,得t2t30,则0,由韦达定理可得t1t23,所以|PA|PB|3|3.21、(1)见解析;(1)见证明【解析】(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的极值即可;(1)问题转化为证exx1xlnx10,根据xlnxx(x1),问题转化为只需证明当x0时,ex1x1+x10恒成立,令k(x)ex1x1+x1,(x0),根据函数的单调性证明即可【详解】(1),当,当,在上递增,在上递减,在取得极大值,极大值为,无极大值.(1)
17、要证f(x)+1exx1即证exx1xlnx10,先证明lnxx1,取h(x)lnxx+1,则h(x),易知h(x)在(0,1)递增,在(1,+)递减,故h(x)h(1)0,即lnxx1,当且仅当x1时取“”,故xlnxx(x1),exx1xlnxex1x1+x1,故只需证明当x0时,ex1x1+x10恒成立,令k(x)ex1x1+x1,(x0),则k(x)ex4x+1,令F(x)k(x),则F(x)ex4,令F(x)0,解得:x1ln1,F(x)递增,故x(0,1ln1时,F(x)0,F(x)递减,即k(x)递减,x(1ln1,+)时,F(x)0,F(x)递增,即k(x)递增,且k(1ln1
18、)58ln10,k(0)10,k(1)e18+10,由零点存在定理,可知x1(0,1ln1),x1(1ln1,1),使得k(x1)k(x1)0,故0xx1或xx1时,k(x)0,k(x)递增,当x1xx1时,k(x)0,k(x)递减,故k(x)的最小值是k(0)0或k(x1),由k(x1)0,得4x11,k(x1)1+x11(x11)(1x11),x1(1ln1,1),k(x1)0,故x0时,k(x)0,原不等式成立【点睛】本题考查了函数的单调性,极值问题,考查导数的应用以及不等式的证明,考查转化思想,属于中档题22、(1);(2)4【解析】(1)分类讨论,求解x的范围,取并集,得到绝对值不等式的解集,即得解;(2)转化原不等式为:,利用均值不等式即得解.【详解】(1)当时不等式可化为 当时,不等式可化为;当时,不等式可化为;综上不等式的解集为.(2)由(1)有,即而当且仅当:,即,即时等号成立,综上实数最大值为4.【点睛】本题考查了绝对值不等式的求解与不等式的恒成立问题,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.