《四川省巴中学市巴州区重点达标名校2022-2023学年中考联考数学试题含解析.doc》由会员分享,可在线阅读,更多相关《四川省巴中学市巴州区重点达标名校2022-2023学年中考联考数学试题含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,已知,那么下列结论正确的是( )ABCD2数据4,8,4,6,3的众数和平均数分别是( )A5,4B8,5C6,5D4,53若关于x的一元二次方程(m-1)x2+x+m2-5m+3=0有一个根为1,则m的值为A1B3C0D1或34在一个
2、不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球从袋中任意摸出一个球,是白球的概率为( )ABCD5下面调查方式中,合适的是()A调查你所在班级同学的体重,采用抽样调查方式B调查乌金塘水库的水质情况,采用抽样调査的方式C调查CBA联赛栏目在我市的收视率,采用普查的方式D要了解全市初中学生的业余爱好,采用普查的方式6在ABC中,C90,tanA,ABC的周长为60,那么ABC的面积为()A60B30C240D1207甲、乙两名同学进行跳高测试,每人10次跳高的平均成绩恰好都是1.6米,方差分别是,则在本次测试中,成绩更稳定的同学是()A甲B乙C甲乙同样稳定D无法确定8如图
3、,C,B是线段AD上的两点,若,则AC与CD的关系为( ) ABCD不能确定9小苏和小林在如图所示的跑道上进行米折返跑.在整个过程中,跑步者距起跑线的距离(单位:)与跑步时间(单位:)的对应关系如图所示.下列叙述正确的是( ).A两人从起跑线同时出发,同时到达终点B小苏跑全程的平均速度大于小林跑全程的平均速度C小苏前跑过的路程大于小林前跑过的路程D小林在跑最后的过程中,与小苏相遇2次10二次函数y=-x2-4x+5的最大值是( )A-7B5C0D911如图,有一矩形纸片ABCD,AB=10,AD=6,将纸片折叠,使AD边落在AB边上,折痕为AE,再将以DE为折痕向右折叠,AE与BC交于点F,则
4、的面积为( )A4B6C8D1012随着“三农”问题的解决,某农民近两年的年收入发生了明显变化,已知前年和去年的收入分别是60000元和80000元,下面是依据三种农作物每种作物每年的收入占该年年收入的比例绘制的扇形统计图依据统计图得出的以下四个结论正确的是()A的收入去年和前年相同B的收入所占比例前年的比去年的大C去年的收入为2.8万D前年年收入不止三种农作物的收入二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,直线a、b相交于点O,若1=30,则2=_14如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线与扇形O
5、AB的边界总有两个公共点,则实数k的取值范围是.15如图,直线y=x与双曲线y=交于A,B两点,OA=2,点C在x轴的正半轴上,若ACB=90,则点C的坐标为_16如图,在ABC中,ABAC,D、E、F分别为AB、BC、AC的中点,则下列结论:ADFFEC;四边形ADEF为菱形;其中正确的结论是_.(填写所有正确结论的序号)17因式分解:_.18计算3结果等于_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,顶点为C的抛物线y=ax2+bx(a0)经过点A和x轴正半轴上的点B,连接OC、OA、AB,已知OA=OB=2,AOB=120(1)求这条
6、抛物线的表达式;(2)过点C作CEOB,垂足为E,点P为y轴上的动点,若以O、C、P为顶点的三角形与AOE相似,求点P的坐标;(3)若将(2)的线段OE绕点O逆时针旋转得到OE,旋转角为(0120),连接EA、EB,求EA+EB的最小值20(6分)为了保证端午龙舟赛在我市汉江水域顺利举办,某部门工作人员乘快艇到汉江水域考察水情,以每秒10米的速度沿平行于岸边的赛道AB由西向东行驶在A处测得岸边一建筑物P在北偏东30方向上,继续行驶40秒到达B处时,测得建筑物P在北偏西60方向上,如图所示,求建筑物P到赛道AB的距离(结果保留根号)21(6分)某商场一种商品的进价为每件30元,售价为每件40元每
7、天可以销售48件,为尽快减少库存,商场决定降价促销若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?22(8分)某数学社团成员想利用所学的知识测量某广告牌的宽度(图中线段MN的长),直线MN垂直于地面,垂足为点P在地面A处测得点M的仰角为58、点N的仰角为45,在B处测得点M的仰角为31,AB5米,且A、B、P三点在一直线上请根据以上数据求广告牌的宽MN的长(参考数据:sin580.85,cos580.53,tan581.1,sin310.52,cos310.86,t
8、an310.1)23(8分)某汽车专卖店销售A,B两种型号的汽车上周销售额为96万元:本周销售额为62万元,销售情况如下表:A型汽车B型汽车上周13本周21(1)求每辆A型车和B型车的售价各为多少元(2)甲公司拟向该店购买A,B两种型号的汽车共6辆,购车费不少于130万元,且不超过140万元,则有哪几种购车方案?哪种购车方案花费金额最少?24(10分)如图,为了测量建筑物AB的高度,在D处树立标杆CD,标杆的高是2m,在DB上选取观测点E、F,从E测得标杆和建筑物的顶部C、A的仰角分别为58、45从F测得C、A的仰角分别为22、70求建筑物AB的高度(精确到0.1m)(参考数据:tan220.
9、40,tan581.60,tan702.1)25(10分)华联超市准备代销一款运动鞋,每双的成本是170元,为了合理定价,投放市场进行试销据市场调查,销售单价是200元时,每天的销售量是40双,而销售单价每降低1元,每天就可多售出5双,设每双降低x元(x为正整数),每天的销售利润为y元求y与x的函数关系式;每双运动鞋的售价定为多少元时,每天可获得最大利润?最大利润是多少?26(12分)如图,甲、乙两座建筑物的水平距离为,从甲的顶部处测得乙的顶部处的俯角为,测得底部处的俯角为,求甲、乙建筑物的高度和(结果取整数).参考数据:,.27(12分)“万州古红桔”原名“万县红桔”,古称丹桔(以下简称为红
10、桔),种植距今至少已有一千多年的历史,“玫瑰香橙”(源自意大利西西里岛塔罗科血橙,以下简称香橙)现已是万州柑橘发展的主推品种之一某水果店老板在2017年11月份用15200元购进了400千克红桔和600千克香橙,已知香橙的每千克进价比红桔的每千克进价2倍还多4元求11月份这两种水果的进价分别为每千克多少元?时下正值柑橘销售旺季,水果店老板决定在12月份继续购进这两种水果,但进入12月份,由于柑橘的大量上市,红桔和香橙的进价都有大幅下滑,红桔每千克的进价在11月份的基础上下降了%,香橙每千克的进价在11月份的基础上下降了%,由于红桔和“玫瑰香橙”都深受库区人民欢迎,实际水果店老板在12月份购进的
11、红桔数量比11月份增加了%,香橙购进的数量比11月份增加了2%,结果12月份所购进的这两种柑橘的总价与11月份所购进的这两种柑橘的总价相同,求的值参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、A【解析】已知ABCDEF,根据平行线分线段成比例定理,对各项进行分析即可【详解】ABCDEF,故选A【点睛】本题考查平行线分线段成比例定理,找准对应关系,避免错选其他答案2、D【解析】根据众数的定义找出出现次数最多的数,再根据平均数的计算公式求出平均数即可【详解】4出现了2次,出现的次数最多,众数是4;这组数据的平均数是:(4+8+4
12、+6+3)5=5;故选D3、B【解析】直接把x=1代入已知方程即可得到关于m的方程,解方程即可求出m的值【详解】x=1是方程(m1)x2+x+m25m+3=0的一个根,(m1)+1+m25m+3=0,m24m+3=0,m=1或m=3,但当m=1时方程的二次项系数为0,m=3.故答案选B.【点睛】本题考查了一元二次方程的解,解题的关键是熟练的掌握一元二次方程的运算.4、D【解析】一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球从袋中任意摸出一个球,共有10种等可能的结果,其中摸出白球的所有等可能结果共有2种,根据概率公式即可得出答案.【详解】根据题意 :从袋中任意摸出
13、一个球,是白球的概率为=.故答案为D【点睛】此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.5、B【解析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似【详解】A、调查你所在班级同学的体重,采用普查,故A不符合题意;B、调查乌金塘水库的水质情况,无法普查,采用抽样调査的方式,故B符合题意;C、调查CBA联赛栏目在我市的收视率,调查范围广适合抽样调查,故C不符合题意;D、要了解全市初中学生的业余爱好,调查范围广适合抽样调查,故D不符合题意;故选B【点睛】本题考查了抽样调查和
14、全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查6、D【解析】由tanA的值,利用锐角三角函数定义设出BC与AC,进而利用勾股定理表示出AB,由周长为60求出x的值,确定出两直角边,即可求出三角形面积【详解】如图所示,由tanA,设BC12x,AC5x,根据勾股定理得:AB13x,由题意得:12x+5x+13x60,解得:x2,BC24,AC10,则ABC面积为120,故选D【点睛】此题考查了解直角三角形,锐角三角函数定义,以及勾股定理,
15、熟练掌握勾股定理是解本题的关键7、A【解析】根据方差的意义可作出判断方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定【详解】S甲2=1.4,S乙2=2.5,S甲2S乙2,甲、乙两名同学成绩更稳定的是甲;故选A【点睛】本题考查方差的意义方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定8、B【解析】由AB=CD,可得AC=BD,又BC=2AC,所以BC=2BD,所以CD=3AC.【详解】AB=C
16、D,AC+BC=BC+BD,即AC=BD,又BC=2AC,BC=2BD,CD=3BD=3AC.故选B【点睛】本题考查了线段长短的比较,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性同时,灵活运用线段的和、差、倍转化线段之间的数量关系是十分关键的一点9、D【解析】A.由图可看出小林先到终点,A错误;B.全程路程一样,小林用时短,所以小林的平均速度大于小苏的平均速度,B错误;C.第15 秒时,小苏距离起点较远,两人都在返回起点的过程中,据此可判断小林跑的路程大于小苏跑的路程,C错误;D.由图知两条线的交点是两人相遇的点,所以是相遇了两次,正确.故选D.10、D【解析】直接利用配方法得出
17、二次函数的顶点式进而得出答案【详解】y=x24x+5=(x+2)2+9,即二次函数y=x24x+5的最大值是9,故选D【点睛】此题主要考查了二次函数的最值,正确配方是解题关键11、C【解析】根据折叠易得BD,AB长,利用相似可得BF长,也就求得了CF的长度,CEF的面积=CFCE【详解】解:由折叠的性质知,第二个图中BD=AB-AD=4,第三个图中AB=AD-BD=2,因为BCDE,所以BF:DE=AB:AD,所以BF=2,CF=BC-BF=4,所以CEF的面积=CFCE=8;故选:C点睛:本题利用了:折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变
18、,位置变化,对应边和对应角相等;矩形的性质,平行线的性质,三角形的面积公式等知识点12、C【解析】A、前年的收入为60000=19500,去年的收入为80000=26000,此选项错误;B、前年的收入所占比例为100%=30%,去年的收入所占比例为100%=32.5%,此选项错误;C、去年的收入为80000=28000=2.8(万元),此选项正确;D、前年年收入即为三种农作物的收入,此选项错误,故选C【点睛】本题主要考查扇形统计图,解题的关键是掌握扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数,并且通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系二、填空
19、题:(本大题共6个小题,每小题4分,共24分)13、30【解析】因1和2是邻补角,且1=30,由邻补角的定义可得2=1801=18030=150解:1+2=180,又1=30,2=15014、2k。【解析】由图可知,AOB=45,直线OA的解析式为y=x,联立,消掉y得,由解得,.当时,抛物线与OA有一个交点,此交点的横坐标为1.点B的坐标为(2,0),OA=2,点A的坐标为().交点在线段AO上.当抛物线经过点B(2,0)时,解得k=2.要使抛物线与扇形OAB的边界总有两个公共点,实数k的取值范围是2k.【详解】请在此输入详解!15、(2,0)【解析】根据直线y=x与双曲线y=交于A,B两点
20、,OA=2,可得AB=2AO=4,再根据RtABC中,OC=AB=2,即可得到点C的坐标【详解】如图所示,直线y=x与双曲线y=交于A,B两点,OA=2,AB=2AO=4,又ACB=90,RtABC中,OC=AB=2,又点C在x轴的正半轴上,C(2,0),故答案为(2,0)【点睛】本题主要考查了反比例函数与一次函数交点问题,解决问题的关键是利用直角三角形斜边上中线的性质得到OC的长16、【解析】根据三角形的中位线定理可得出AD=FE、AF=FC、DF=EC,进而可证出ADFFEC(SSS),结论正确;根据三角形中位线定理可得出EFAB、EF=AD,进而可证出四边形ADEF为平行四边形,由AB=
21、AC结合D、F分别为AB、AC的中点可得出AD=AF,进而可得出四边形ADEF为菱形,结论正确;根据三角形中位线定理可得出DFBC、DF=BC,进而可得出ADFABC,再利用相似三角形的性质可得出,结论正确此题得解【详解】解:D、E、F分别为AB、BC、AC的中点,DE、DF、EF为ABC的中位线,AD=AB=FE,AF=AC=FC,DF=BC=EC在ADF和FEC中,ADFFEC(SSS),结论正确;E、F分别为BC、AC的中点,EF为ABC的中位线,EFAB,EF=AB=AD,四边形ADEF为平行四边形AB=AC,D、F分别为AB、AC的中点,AD=AF,四边形ADEF为菱形,结论正确;D
22、、F分别为AB、AC的中点,DF为ABC的中位线,DFBC,DF=BC,ADFABC,结论正确故答案为【点睛】本题考查了菱形的判定与性质、全等三角形的判定与性质、相似三角形的判定与性质以及三角形中位线定理,逐一分析三条结论的正误是解题的关键17、【解析】分析:先提公因式,再利用平方差公式因式分解即可详解:a2(a-b)-4(a-b)=(a-b)(a2-4)=(a-b)(a-2)(a+2),故答案为:(a-b)(a-2)(a+2)点睛:本题考查的是因式分解,掌握提公因式法、平方差公式进行因式分解是解题的关键18、1【解析】根据二次根式的乘法法则进行计算即可.【详解】 故答案为:1【点睛】考查二次
23、根式的乘法,掌握二次根式乘法的运算法则是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、 (1) y=x2x;(2)点P坐标为(0,)或(0,);(3).【解析】(1)根据AO=OB=2,AOB=120,求出A点坐标,以及B点坐标,进而利用待定系数法求二次函数解析式;(2)EOC=30,由OA=2OE,OC=,推出当OP=OC或OP=2OC时,POC与AOE相似;(3)如图,取Q(,0)连接AQ,QE由OEQOBE,推出,推出EQ=BE,推出AE+BE=AE+QE,由AE+EQAQ,推出EA+EB的最小值就是线段AQ的长.【详解】(1)过点A作
24、AHx轴于点H,AO=OB=2,AOB=120,AOH=60,OH=1,AH=,A点坐标为:(-1,),B点坐标为:(2,0),将两点代入y=ax2+bx得:,解得:,抛物线的表达式为:y=x2-x;(2)如图,C(1,-),tanEOC=,EOC=30,POC=90+30=120,AOE=120,AOE=POC=120,OA=2OE,OC=,当OP=OC或OP=2OC时,POC与AOE相似,OP=,OP=,点P坐标为(0,)或(0,)(3)如图,取Q(,0)连接AQ,QE ,QOE=BOE,OEQOBE,EQ=BE,AE+BE=AE+QE,AE+EQAQ,EA+EB的最小值就是线段AQ的长,
25、最小值为【点睛】本题考查二次函数综合题、解直角三角形、相似三角形的判定和性质、两点之间线段最短等知识,解题的关键是学会由分类讨论的思想思考问题,学会构造相似三角形解决最短问题,属于中考压轴题20、100米. 【解析】【分析】如图,作PCAB于C,构造出RtPAC与RtPBC,求出AB的长度,利用特殊角的三角函数值进行求解即可得.【详解】如图,过P点作PCAB于C,由题意可知:PAC=60,PBC=30,在RtPAC中,tanPAC=,AC=PC,在RtPBC中,tanPBC=,BC=PC,AB=AC+BC=PC+PC=1040=400,PC=100,答:建筑物P到赛道AB的距离为100米【点睛
26、】本题考查了解直角三角形的应用,正确添加辅助线构造直角三角形,利用特殊角的三角函数值进行解答是关键.21、(1)两次下降的百分率为10%; (2)要使每月销售这种商品的利润达到110元,且更有利于减少库存,则商品应降价2.1元【解析】(1)设每次降价的百分率为 x,(1x)2 为两次降价后的百分率,40元 降至 32.4元 就是方程的等量条件,列出方程求解即可;(2)设每天要想获得 110 元的利润,且更有利于减少库存,则每件商品应降价 y 元,由销售问题的数量关系建立方程求出其解即可【详解】解:(1)设每次降价的百分率为 x40(1x)232.4x10%或 190%(190%不符合题意,舍去
27、)答:该商品连续两次下调相同的百分率后售价降至每件 32.4元,两次下降的百分率为10%;(2)设每天要想获得 110 元的利润,且更有利于减少库存,则每件商品应降价 y 元,由题意,得 解得:1.1,2.1,有利于减少库存,y2.1答:要使商场每月销售这种商品的利润达到 110 元,且更有利于减少库存,则每件商品应降价 2.1 元【点睛】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程,解答即可22、1.8米【解析】设PA=PN=x,RtAPM中求得=1.6x, 在RtBPM中,解得x=3,MN=MP-NP=0.6x
28、=1.8.【详解】在RtAPN中,NAP=45,PA=PN,在RtAPM中,,设PA=PN=x,MAP=58,=1.6x,在RtBPM中,,MBP=31,AB=5, x=3,MN=MP-NP=0.6x=1.8(米),答:广告牌的宽MN的长为1.8米【点睛】熟练掌握三角函数的定义并能够灵活运用是解题的关键.23、 (1) A型车售价为18万元,B型车售价为26万元. (2) 方案一:A型车2辆,B型车4辆;方案二:A型车3辆,B型车3辆;方案二花费少.【解析】(1)根据题意列出二元一次方程组即可求解;(2)由题意列出不等式即可求解.【详解】解:(1)设A型车售价为x元,B型车售价为y元,则:解得
29、:答:A型车售价为18万元,B型车售价为26万元.(2)设A型车购买m辆,则B型车购买(6m)辆, 13018m+26(6m) 140,:2m方案一:A型车2辆,B型车4辆;方案二:A型车3辆,B型车3辆;方案二花费少【点睛】此题主要考查二元一次方程组与不等式的应用,解题的关键是根据题意列出方程组与不等式进行求解.24、建筑物AB的高度约为5.9米【解析】在CED中,得出DE,在CFD中,得出DF,进而得出EF,列出方程即可得出建筑物AB的高度;【详解】在RtCED中,CED=58,tan58=,DE= ,在RtCFD中,CFD=22,tan22= ,DF= ,EF=DFDE=,同理:EF=B
30、EBF= ,解得:AB5.9(米),答:建筑物AB的高度约为5.9米【点睛】考查解直角三角形的应用,解题的关键是明确题意,利用数形结合的思想解答问题25、(1)y=5x2+110x+1200;(2) 售价定为189元,利润最大1805元【解析】利润等于(售价成本)销售量,根据题意列出表达式,借助二次函数的性质求最大值即可;【详解】(1)y(200x170)(40+5x)5x2+110x+1200;(2)y5x2+110x+12005(x11)2+1805,抛物线开口向下,当x11时,y有最大值1805,答:售价定为189元,利润最大1805元;【点睛】本题考查实际应用中利润的求法,二次函数的应
31、用;能够根据题意列出合理的表达式是解题的关键26、甲建筑物的高度约为,乙建筑物的高度约为.【解析】分析:首先分析图形:根据题意构造直角三角形;本题涉及两个直角三角形,应利用其公共边构造关系式,进而可求出答案详解:如图,过点作,垂足为.则.由题意可知,.可得四边形为矩形.,.在中,.在中,. .答:甲建筑物的高度约为,乙建筑物的高度约为.点睛:本题考查解直角三角形的应用-仰角俯角问题,首先构造直角三角形,再借助角边关系、三角函数的定义解题,难度一般27、(1)11月份红桔的进价为每千克8元,香橙的进价为每千克20元;(2)m的值为49.1【解析】(1)设11月份红桔的进价为每千克x元,香橙的进价为每千克y元,依题意有, 解得,答:11月份红桔的进价为每千克8元,香橙的进价为每千克20元;(2)依题意有:8(1m%)400(1+m%)+20(1m%)100(1+2m%)=15200,解得m1=0(舍去),m2=49.1,故m的值为49.1